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ized, with a current I&IA, can (i) propagate with
an equilibrium determined by its self-fields, as
predicted by Yoshikawa, ' and (ii) set up a rev-
ersed-field plasma configuration by inducing cur-
rents in the plasma and wall of a closed, initially
field-free, metal tube.

In the present experiments, the configuration
resembles a linear reversed-field pinch. It is
possible to envisage extensions of this technique
to produce plasma configurations with closed
field lines. These could be further heated by the
injection of intense neutral, electron, or ion
beams; or by an imploding liquid metal liner, as
in the Naval Research Laboratory LINUS fusion
concept. s
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We have applied the Kruskal-Oberman energy principle to a simple model of an aniso-
tropic tokamak in which the pressure varies around flux surfaces. We show that the
weighting of pressure towards regions of favorable curvature leads to a significant sta-
bilization of the high-n ballooning modes.

Following recent theoretical investigations of the MHD (magnetohydrodynamic) stability of scalap-
pressure tokamaks, ' ' it is now generally believed that the upper limit to p is set by the ba], looning
mode. Apart from its use as an additional heat source, neutral injection has been proposed as a meth-
od for "pumping-up" P in the flux-conserving tokamak'; it is also fundamental to the counterstreaming
ion concept. ' These applications have led us to consider the MHD stability of an anisotropic model of
tokamak to high-n ballooning, n being the toroidal mode number.

Qur analysis is based on the Kruskal-Oberman energy principle; using the property of adiabatic in-
variance, Andreoletti" has shown their result to be independent of the form of distribution function.
We assume that neutral injection is applied at an angle to the magnetic field such that hot ions are cre-
ated only in the untrapped region of velocity space, so that the distribution function for the trapped par-
ticles is not significantly anisotropic. Then for small inverse aspect ratio, 6, the kinetic term in
Kruskal-Oberman is O(5't'), "whereas the fluid terms are O(5'), when P-5. Thus, we drop the kinet-
ic term, anticipating that our general analysis will be applied to a large-aspect-ratio model. Writing
the fluid terms in a form as closely analogous to that for scalar pressure' as possible, we obtain

1 —o ~' —1-o, &&B ~ -2 ~ ~ ~ VP

1 0+8'(1+g ) 1+ ( K+ v ( +B ((r +'v )(( i~(*I,1+o, l+ o'~

where p=(p, +p))}/2, o =(p)) p )/B', /=curl()xB), $„=0, and K denotes the field-line curvature.
In order to define o~, we introduce the pressurelike moment
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where the velocity-space variables are e=-,'v' and p. = ,'v-, '/B, so that vp =2(e —pB) .Thus o~=(2P~+ C)/
B' .It follows from Eq. (2) and the definitions of p~ and p ~~

that C and p are related by"

B ~ VP =
~ B ~ V(gB').

In practice, the criteria for stability to the "firehose" and "mirror" modes, ""namely, 1 —0 &0 and
1+0 &0, will be satisfied.

Following Dobrott et al. and expanding in 1/n, we find that to lowest order the minimizing displace-
ments satisfy V ~ $ = O(l) and 8 ~ V$ = O(1). The lowest-order contribution of' the kink term [second in
Eq. (1)] vanishes, and after minimization with respect to the first-order displacement, (~'&, the "field
compression" term (fourth) also vanishes. In zeroth order, 6W is then a functional of the zeroth-or-
der $ only. Employing the usual axisymmetric (g, y, cp) coordinate system, we express g as a Fourier
mode )=X(g, y)e'"~, and obtain

mv(')=Jl ct7I(1 —rr ) ', +, ——(B &(&)
/B Vg, J' /Vgl' 1

f Vqi' B' n 6(

( $~tc~+ gK) $~P~+ $,*P, + cc. + ~ =
~ $~z~+ gp i', (4)(Vgi, B'(1 —o )(o,+o )

where

Vg BxV(

with

1 8$, BxVg aP BxVg VP

Minimizing Eq. (4) with respect to)&, we obtain an Euler equation containing partial derivatives which
act on the rapid g variation of $&, as well as derivatives with respect to y; following Connor, Hastie,
and Taylor, this equation is reduced to an ordinary differential equation. Thus, we define the trans-
formation $&(g, y) -F(g, y) by

&~ =pe' "f F(g, y) exp[ —i(my+ n f'vdy')]dy,

where v =B~/j V|j )~ Vy), and all the rapid g variation of (& is contained within the phase factor exp(-in
x f' vdy'). If we define G(g, y) = f; vdx, then in transform space the Euler equation becomes

1 & '(1 —o ) 1
IV(l''&G ' »& — ~~ IV(l — &G

Z&y (Vg(' B' (et( J By ~ z B ' ~ '8( (5)

where J is the Jacobian of the ((, g, y) coordinate system. From the mode radial structure defined
above, we deduce the physical boundary condition ( J ~'~'F -0 as (y(-~. Asymptotic analysis of Eq. (5)
leads to the localized interchange criterion, "as was noted in the scalar-pressure case. ' En general,
anisotropic equilibria are of the form P =P((, y); this suggests that if equilibria can be produced such
that the pressure surfaces are displaced inwards relative to the flux surfaces, then the "loading" of
pressure into regions of favorable curvature could lead to stability at higher P. We now demonstrate
this to be the case.

In coordinates (r, 6) based on the plasma center, the major radius is R=R, + rcos6. We expand the
equilibrium equations" in 5 and choose the form P =P(g) [1+a(r/a) cos6]+ O(5'), where P is O(5), n is
constant, and g is a scale length. Then consistent with this choice the leading-order axial current den-
sity isj ~=-g'(g) —x P(g)(2 +x/oa), where x=rcos6. Choosing linear@(g) and P(g), and setting /=0
on the circular boundary of radius a, we obtain

&gal, 6) = ', (1 —r'/a') 1+—cos 6+ —1+——B a' kx
q 2(1+ 4n z) a 6 4 a

+—
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FIG. &. Flux (solid lines) and constant-p surfaces
(dashed lines) for equilibrium with k = 0.5 and e = —0.2.
The major axis lies to the left,

where q = 2''B, /R, f~ is a typical safety factor,
I~being the toroidal current, and B, character-
izes the magnetic field. Because of the ordering
P „—=P ~,

' (g)+ O(6'), the variation of P on the flux
surfaces results from p~ only. For given values
of the free parameters k and n, the poloidal beta,
defined by

p~=8mI~ 'J prdrd8= 6 'k(1+ &nk)(1+ -,'o.k) ',
is fixed, and Eq. (6) determines an entire class
of equilibria whose members are distinguished
by a further parameter $ ~

( n
~ /(1 —(n () such

that p ~/p ~~

= g+ o(1+ g)(r/a) cos 8. Flux and pres-
sure surfaces for a typical case are shown in
Fig. 1. As will be made clear later, o. is related
to the intensity and angle of injection, and is gen-
erally small, so that $ is a direct measure of the
pressure anisotropy. Typically, 36 gs3 since
the hot-ion pressure ean be comparable with that
of the background plasma for which P -6. Paral-
lel injection into a low-pressure background plas-
ma with P-6' can be modeled also, by setting $
=n =0, in which case p~|-6, p, -6' and the equi-
librium coincides to leading order with that of
Cordey and Haas. " Irrespective of the value of
g, it is clear from Eqs. (5) and (6) that equilibri-
um and stability properties depend only on the in-
jection parameter n and on k, which determines

P ~

We have taken the large-aspect-ratio form of
Eq. (5), and by varying Bp/Bg to satisfy the bound-
ary condition on I as y-~ have calculated numer-
ically the pressure gradients at marginal stabili-
ty for surfaces in the above equilibrium. Except

FIG. 2. Variation of the marginally stable poloidal
P, measured in units of 5 ~, is plotted vs z. For P&
above the dashed line, the toroidal current reverses
on the insid. e.

for the immediate vicinity of the magnetic axis,
the localized interchange criterion is always
satisfied when o. &0. On a surface of given shape
and magnetic field, with a prescribed amount of
shear, there are, in general, two marginally
stable pressure gradients which bound 'a range
of unstable values. When n =0, the equilibrium
value of Bp/8( is found always to lie in the un-
stable range, but rather close to the higher mar-
ginal point. As o. falls below zero, the unstable
range narrows. Plotting P~ versus a, our re-
sults are presented as a marginal stability line
in Fig. 2. We also indicate the equilibrium limit
and, for completeness, the current-reversal lim-
it. We observe that for very modest values of o.

(-0.1), our model is ballooning-stable right up
to the equilibrium limit; as P~ approaches this
limit, the value of e corresponding to marginal
stability begins to decrease. The effect is thought
to result from a stabilization associated with
large values of the major-radius displacement.
function 6' close to the boundary, where 4'-k.
The least stable surface is always near the bound-
ary. In obtaining the marginal curve, we have
excluded the magnetic axis and a small surround-
ing region (less than 1% of plasma volume). Any
instability in the excluded region mill thus be
strongly localized round the axis and is therefore
disregarded.

In the case of scalar pressure (n =0) as k-0
the shear at the boundary vanishes like k', and
as a result our equilibrium is unstable even in
the limit of small pressure. However, with a
current profile producing finite shear at the
boundary we expect stability up to a finite limit
in P~. When the additional shear is small this
value is in the vicinity of point A in Fig. 2; the
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latter point is obtained by applying the result of
Connor, Hastie, and Taylor' to our circular
boundary.

As a consequence of large aspect ratio and Eq.
(3), P can only exhibit lowest-order variation
round a flux surface if C is O(1). Calculations
of p, p „, and C show that for a distribution func-
tion which models single-beam injection into the
passing band, " such variation of +is possible
only when the beam pressure is O(5) and the an-
gle of injection is large, so that hot ions are cre-
ated with v „/v = TD~', where T(g) is O(1) but suf-
ficiently high to avoid trapping. (Ignoring the dia-
magnetic part of B ~, this is ensured if T & v 2 for
injection onto a surface of circular cross sec-
tion. ) Furthermore, in the limit 5«1/T'«1,
the beam perpendicular pressure takes the form
P»(g) [1- (I/2 T')(r/a) cos 6], there being no O(5)
hot-ion contribution to P ~~(g). With linear forms
for the isotropic background pressure P,(g) and
for P~~((), P now assumes the model form leading
to Eq. (6) (provided T is constant) where $ be-
comes $=1+P»(g)/P, (t/r), and a =- —,'($ —1)/(g
+1)T'. Thus, $ measures the strength of the in-
jection source, and 0. depends on the angle of in-
jection. Typically with $-3 and T- &3, we have
n -0.1, so the range of values covered in Fig. 2

is characteristic.
For the same class of current profiles, it is

clear from Fig. 2 that by a modest inward weight-
ing of pressure, a significant improvement in P
can be obtained over the scalar-pressure value.
Although the weighting modifies the shear, this
effect is small at the values of n (- 0.1) neces-
sary to ensure stability up to the equilibrium lim-
it. Naturally, we expect this class of profiles to
be kink unstable; stabilization of this mode re-
quires shaping of the current profile. We conjec-

ture that the effect to which attention has been
drawn in this Letter may also give rise to im-
proved ballooning stability for equilibria possess-
ing more realistic current profiles.

We are grateful to Mr. R. J. Hastie, Dr. J. %.
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helpful discussions.
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