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Kr, He, N,, and D, adsorbed on graphite®°”2? and
the o< g transition studied in O, adsorbed on the
same substrate.?? The first one is induced by po-
tential wells of the substrate surface, the second
one is due to magnetic ordering. For NO ad-
sorbed on graphite, the size and the shape of
dimers are important parameters in the stabil-
ization of 2D solids.
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Charge Distribution in ¢ Direction in Lamellar Graphite Acceptor
Intercalation Compounds
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We calculate the charge distribution p(z) and Fermi-level distribution among the differ-
ent graphite layers in a lamellar graphite acceptor compound. The charge distribution is
highly nonhomogeneous and, because of the semimetallic nature of graphite, nonlinear ef-
fects are important. The calculations for p(z) are performed in terms of a generalized
Thomas-Fermi model and show that there is a transition at short distances from the inter-
calate from a z~ ¢ power law to an exponential asymptotic decay.

The long-standing interest® in graphite interca-
lation compounds has been considerably enhanced
by recent reports®3 of electrical conductivities
exceeding that of copper in some of these com-
pounds, Nevertheless, important questions con-
cerning the electronic structure of such com-
pounds are not settled yet. It is the purpose of
this paper to clarify one important point, viz,,

the charge distribution in the ¢ direction,
Lamellar graphite intercalation compounds
form ordered sequences of graphite and interca-
late layers characterized by the stage » where n
denotes the number of graphite layers between
two successive intercalate layers. It is generally
agreed that the intercalate ions act as donors or
acceptors transferring electrons or holes, re-
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spectively, to the graphite. The charge transfer
is expressed in terms of a parameter f which de-
notes the fractional electronic charge transferred
per intercalate ion. There is a considerable
amount of disagreement on the value of f even in
the carefully studied graphite halogen compounds,
Typically, transport experiments indicate a high
degree of ionization (0.1 << 1) whereas experi-
ments which directly probe the Fermi surface re-
sult in a small value of f.* The f values given in
Ref. 4 have been deduced under the assumption
that the charge transfer results in a homogeneous
shift of the graphite Fermi level or, in other
words, in a homogeneous charge distribution p(z)
in the z direction.

The screening length in a standard metal is of
order of 1 A. For graphite, because of its much
smaller carrier concentration, a larger value is
expected but there is no a priori basis for the
assumption® that the screening length is large
compared to the intercalate layer separation in
dilute compounds.

Spain and Nagel® have estimated a screening
length of about 5 A in pure graphite, In intercala-
tion compounds the strong Fermi-energy depen-
dence of the carrier concentration leads to a
pronounced nonlinearity and the breakdown of the
concept of a screening length. We introduce a
generalized Thomas-Fermi model to deal with
screening in semimetals in general and apply it
to graphite intercalation compounds.

The interaction between intercalate and graphite
is in general much more complex than the simple
charge-transfer model suggests. Girifalco and
Holzwarth” have calculated the electron density
in a stage-1 LiC, compound and have discussed
the deviations from a simple-minded ionic model.
We note, however, that all interactions except
the electrostatic are short range and thus re-
stricted to the layers adjacent to the intercalate
(bounding layers). In this paper we are exclusive-
ly interested in the screening of the electrical
field induced by the intercalate., We avoid all
problems associated with short-range interac-
tions in the first layer by defining an effective f
which produces the correct long-range fields and
treating it as a free parameter, Furthermore
we restrict the calculation to acceptor compounds
in which covalency effects are less important as
is evident from their large anisotropy in elec-
trical conductivity.

Our calculation is based on the Thomas-Fermi
model which assumes a local relation between
charge and electrostatic potential, The Thomas-
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Fermi model can be characterized as the ¢ -0
limit of the Lindhard screening model® and its
accuracy increases with decreasing carrier con-
centration, i.e., increasing screening length, We
thus expect it to be a very good appoximation for
graphite intercalation compounds. Furthermore
we treat the problem as one dimensional, i.e.,
we assume the charge to be homogeneously dis-
tributed perpendicular to the ¢ direction,

We consider a stage-n lamellar compound. p(z)
denotes the charge distribution in the ¢ direction,
w(z) the Fermi energy, and E(z) the electrical
field in the graphite layers induced by p(z) and
the charged intercalate. Poisson’s equation reads

dE@) 4T oy ATe () —nl ). (1)

daz €, €,

Here €, denotes the dielectric constant in the ¢
direction, u, = u(z), and p and » are the concen-
trations of holes and electrons, respectively,
For small u, n(u) and p(u) are markedly tem-
perature dependent.

The equilibrium condition for the Fermi level
w(z) is, within the Thomas-Fermi approximation,

du(z)/dz =E(z) . (2)
By combining (1) and (2) we obtain
& w(z)/dz?=(4me/e ) p(n,) —=n(p,)]. (3)

For simple forms of p(u) ~n(w), Eq. (3) can be
solved analytically. If the total density of states
is constant N(u)=N,, then

d® () /dz*® = (4me /€ . )No| u(2) - o) (4)

and both u(z) and p(z) vary exponentially with a
screening length

)\=(€_L/4TTeN0)1/2.

For semimetals or zero-gap semiconductors the
density of states can sometimes be approximated
by a power law N(p) ~(u— py) In this case Eq.

(3) becomes

& u(2)/dz? ~ [ (2) — 1] * ™. (5)

Equation (5) can be solved analytically and we
find u(z) and p(z) to be power laws with powers
-2/a and -2(a +1)/a, respectively. For large
shifts of the Fermi level in graphite, N(u) is
approximately linear in u and by solving (5) with
the appropriate boundary conditions for an in-
finitely dilute compound we obtain

p(2) ~(1+2/29)7%, w2) —po~(1+2/24)72,  (6)

where z =0 is located at the intercalate-graphite
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interface and z, ~f~Y2,

In general N(u) has to be computed from the
band structure and (3) has to be solved numeri-
cally. Since (3) is nonlinear, several solutions
.may exist of which the one with the minimum
total (band plus electrostatic) energy is physical-
ly relevant.

To calculate p(z) and u(z) based on Eq. (3) we
have to know the carrier density p(u) —n(u) as a
function of Fermi energy for graphite, We have
computed p(u) —n(w) from the Slonczewsky-Weiss-
McClure® band model using the same band pa-
rameters as in (5).

Before we can solve Eq. (3) we have to specify
€, which represents the dielectric constant in
the ¢ direction and includes all contributions ex-
cept free carriers, €, thus has to be deduced
from far-infrared studies and is found™ to be €
=5.4.

The experimental situation with regard to the
exact value of €, is not clear'® and we note that
in the power-law regime [Eq. (6)] the characteris-
tic length 2z, varies as €,*3 and in the asymptotic
linear regime the screening length A varies as
ell/z. A smaller €, would thus decrease the screen-
ing distances and enhance the nonlinearity.

For the following calculations it is most con-
venient to take z =0 at the center of the n graphite
layers. The two layers bounding the intercalate
are then located at z=+(x — 1)c/4 where ¢ =6.74
A is twice the layer spacing of pure graphite.
For symmetry reasons 9p(0)/8z = 8 u(0)/8z =0
and u(0) is a free parameter which for each
value of n defines f.

We have numerically calculated the charge dis-
tribution p(z) and Fermi-level distribution u(z)
for acceptor lamellar compounds based on the
formalism discussed above. First we discuss
the extremely dilute limit (% = 30). This limit is
characterized by a virtually unperturbed region
of graphite around z =0 and thus in the vicinity
of the intercalate p(z) does not depend on 7.

In Fig. 1 we have plotted p and Ap as a function
of distance from the intercalate layer in the ex-
tremely dilute limit for different values of f. In
this calculation f refers to an AC,, compound.
Other stoichiometries are covered by redefining
f (f=1for AC,, corresponds to f=0,75 for AC,,
etc.). For small distances and f=1, p varies ac-
cording to the power law of Eq. (6) with z,~5.2 A.
The analytical solution of Eq. (5) assuming a lin-
ear density-of-states dispersion N(p) yields z,
=5.4 A. For small f or large distances, the
asymptotic decay of p is exponential with a screen-

1
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FIG. 1. Charge density p (solid line) in units of 10%°
cm”® and shift in chemical potential Ap (dashed line) in
eV as a function of distance from the intercalate-graph-
ite interface. The abscissa is in units of graphite layer
spacings and the three curves in decreasing magnitude
refer to f values of 1, 0.1, and 0.01, respectively. All
values are given for an ACg, compound at 7'=0 in the
extremely dilute limit.

ing length of 7.7 A. The nonlinearity is also evi-
dent from Table I. The fraction of transferred
charge localized in the bounding layers markedly
depends on f whereas the distance I, at which the
Fermi surface crosses the conduction-band ex-
tremum at the K point depends less on f than ex-
pected from a linear model.

We now discuss somewhat more concentrated
compounds. Obviously a critical stage n, or con-
centration ¢, is reached when the electron pocket
of the Fermi surface disappears in the center
graphite layer at 2=0, i.e,, the Fermi surface
crosses the K-point conduction-band extremum,
For an ACg, compound, for f=1, 0.1, 0,01, we
find n,=20, 17, 10 and c;,=0.83, 0.98, and 1,66
at.% respectively, These numbers should be com-
pared with results from Shubnikov—-de Haas'! and
magnetoreflection'?>!® experiments. Chung and
Dresselhaus!? and Platts, Chung, and Dresselhaus?!?
have carried out careful magnetoreflection experi-
ments on graphite-Br, residue compounds., They
were able to label the observed transitions accord-
ing to the band structure of pure graphite. With
increasing Br, concentration the observed signals
decrease in intensity but the oscillation periods re-
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TABLE I. f dependence of screening parameters in
the extremely dilute limit. The indicated f values cor-
respond to an ACg, compound, i.e., f=1 corresponds to
a two-dimensional charge density of 6.4x 10" ¢ /cm? in
an intercalate layer. p, is the fraction of transferred
charge localized in the two bounding graphite layers
and Iy is the distance at which the Fermi surface cross-
es the K-point conduction-band extremum. All values
are calculated for T=0.

U

f Py &)
1 0.77 29.2
0.3 0.64 26.5
0.1 0.53 22.8
0.03 0.44 17.1
0.01 0.41 10.5

—0 0.35 s

main virtually unchanged. From the cutoff of a
particular resonance transition it is found that the
Fermi surface crosses the K point at a Br, con-
tration of about 0,6 at.% The results were inter-
preted under the assumption of a homogeneous
shift of the Fermi level and it was concluded that
f ~0.02, On the basis of our calculation we would
argue that cutoff occurs when the Fermi level of
the layers at z ~0 cross the K-point extremum,
i.e., ata Br, concentration ¢ which depends on
f. Since the experiments have been carried out
on residue compounds in which the intercalate is
associated with defects and not stacked in a regu-
lar way it is impdssible to make a quantitative
contact to our calculation. We note two things,
however: The observed cutoff concentration is
close to the range calculated for lamellar com-
pounds and the calculated c,’s depend very little
on f, Since the distribution of intercalate ions
in the specimens of Refs. 12 and 13 is not known,
the magnetoreflection results have to be consid-
ered consistent with virtually any value 0 <f<1.
This example serves to illustrate the importance
of a realistic p(z) for a correct interpretation of
experimental results.

Next we discuss the charge distribution in con-
centrated compounds. Since we are interested
in the charge distribution among the graphite lay-
ers and not within one layer, the casesn=1, 2
are trival by symmetry, In a stage-3 compound
the fractional distribution among the three layers
can be characterized by a parameter x, such that
the distribution becomes (1 -x,)/2, x,, (1-x,)/2.
In a stage-4 compound x, is analogously defined
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TABLE II. Charge distribution in state-2 (1 -x3)/2,
%3, (1—x3)/2 and stage-4 (1—2x,)/2, x4, x4, (1—2x,)/2
compounds for different values of f (f defined for an
ACg, compound). The last entry gives the asymptotic
value for f— 0.

s %3 *4
1 0.16 0.10
0.3 0.21 0.14
0.1 0.26 0.18
0.03 0.29 0.20
0.01 0.30 0.21

—0 0.31 0.23

by (1-2x,)/2, x,, x, (1-2x,)/2. A homogeneous
distribution corresponds to x,=3 and x,=%. Ta-
ble II gives values of x,,x, for different f’s cor-
responding to an ACy, compound. (With decreas-
ing f the charge distribution becomes more homo-
geneous,) i

One may argue that the results of a Thomas-
Fermi calculation become questionable if p(z)
shows rapid variation within one graphite layer.
Figure 1 shows that p(z) varies rapidly within the
first layer for f~1. In the framework of a tight-
binding rigid-band model, p(z)=const for each
graphite layer. We have thus repeated the calcu-
lation of x, and x, for f=1 assuming p(z) =const
within each layer. The results agree very well
with the values given in Table II showing that the
overall behavior of p(z) does not depend on the
details of the charge distribution within each lay-
er. However, the calculations show this to hold
only for not too large f’s; for hypothetical f val-
ues f =3, x, and x, would become strongly de-
pendent on the detailed distribution,

We have shown that because of the small num-
ber of free carriers in pure graphite and the
pronounced dependence of carrier concentration
on Fermi energy, the screening of the intercalate
charge density is complex. The high carrier den-
sity associated with large shifts of Fermi energy
provides an effective screening in the vicinity of
the intercalate but the small carrier density of
pure graphite leads to a relatively long tail in
dilute compounds. In general, experiments on
intercalation compounds have been interpreted
either by assuming u(z) = const throughout the
graphite (see, for instance Ref. 5) or by assum-
ing w(z) =const in the layers not bounding the
intercalate (see, for instance Ref. 6). Our cal-
culations show both models to be inadequate and
give for the first time a realistic u(z) and p(z)
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which has to form the basis for a correct inter-
pretation of experimental results on transport,
optical, and Fermi-surface experiments.
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Magnetization Reversal of a FeSi Picture-Frame Crystal Measured by
the Time-Dependent Neutron-Depolarization Technique

F. J. van Schaik and M. Th. Rekveldt
Intervuniversitair Reactor Instituut, Delft, The Nethevlands
(Received 23 June 1978)

The magnetization-reversal process within a [100] [010] [001] picture-frame FeSi (3.5
wt% Si) crystal has been investigated by means of the time-dependent neutron-depolariza-
tion technique, applying a periodic block-shaped magnetic field. Various distinct states
are observed in the magnetization-reversal process: firstly, nucleation of regions of
reversed magnetization; subsequently, the merging of these regions into two wavy do-
main walls according to a sandwich structure and the motion of these straightening walls

towards the center.

It has long been recognized that magnetization
reversal in a ferromagnet under the influence of
a pulsed magnetic field can be described in terms
of nucleation regions of reversed magnetization
(denoted reversed regions) and eddy-current—
controlled domain-wall motion.2 However, the
experimental information about the reversal pro-
cess is restricted by the detection techniques
used up to now: pickup coils to measure the
average magnetization of the bulk material com-
bined with Kerr-effect observations of the sur-
face behavior of the domain walls. In contrast,
polarized neutrons are a unique probe for in-
vestigating magnetic domains within the volume
of a ferromagnet.®** Time-dependent neutron-
depolarization technique®® (TDNDT) gives in-
formation with a spatial resolution of several
microns about the internal magnetization distribu-
tion and the local direction of the magnetization.
In this Letter we report the results of applying
the newly developed TDNDT to study the magnetic
reversal processes within a single-crystal pic-

ture-frame specimen of silicon(3.5 wt%) iron,

In the neutron-depolarization technique* the
polarization direction of a monochromatic neu-
tron beam impinging in the x direction on the
sample can be adjusted before and analyzed after
transmission along any of the three orthogonal
directions x, y, and z (Fig. 1). The polarization
change D;; by the sample is defined by D“,=(Is
-1;;)/(I,- 1), in which I, is the intensity of a
fully depolarized beam, I;;the intensity with
analyzation and polarization directions ¢ and j
(¢, j=x,9, 2), and I, the intensity of the undis-
turbed polarized beam.

The polarization direction of the neutron beam
rotates with the Larmor precession frequency
around the magnetization direction in the crystal,
The total rotation angle ¢ is given by ¢=yB . d/v,
where y is the gyromagnetic ratio of the neutron
(y=1.80x10% s~! T™!, mksa units), B, the spon-
taneous magnetic induction, v the velocity of the
neutrons, and d the crystal thickness. The length
| D] and rotation angle ¢ of the polarization vector
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