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Resonant Effects on the Low-Frequency Vlasov Stability
of Axisymmetric Field-Reversed Configurations

%e investigate the effect of particle reson
modes in field-reversed geometries, e.g.,
high field reversal, modes which are hydrom
ion resonances. The stabilizing effect of a to

A renewed interest has developed in field-re-
versed or Astron-type magnetic confinement sys-
tems produced by the injection of beams of pro-
tons' or neutral hydrogen atoms into a magnetic
mirror field. ' If a sufficient current of injected
ions can be trapped, a region of closed magnetic
field lines will be created within a larger region
of open field lines. Provided such a configuration
has favorable stability properties, it could lead
to a promising fusion reactor. The low-frequency
(~ «Q, , the ion gyrofrequency) stability of a
specific configuration, viz. an ion ring, against
kink modes has been studied by Lovelace. ' A
more general approach has been developed by
Sudan and Rosenbluth ' to arrive at an energy
principle in which the energetic beam ions are
treated by the Vlasov formalism whereas the
background plasma is described by the two-fluid
equations.

In this paper we investigate the effects of beam
particle resonances on the stability of low-fre-
quency modes in a field-reversed system. Al-
though such resonances are implicitly contained
in the analysis of Sudan and Rosenbluth, 4' in the
two cases studied in detail, the long I' layer or
0 pinch and the large-aspect-ratio ion ring, reso-
nant instabilities have exponentially small growth
rate for low beam temperature. However, for
appreciable beam temperature, which is neces-
sary for field reversal on axis for rings of finite
axial extent, the energy absorbed by the resonant
ions in the beam frame can be substantial, and
negative energy modes in the beam frame can be
driven to instability with growth rate approaching
that of a hydromagnetic instability.

Assume that the energetic ions can be described
by a rigid-rotor equilibrium fo(H —QP e), where H
and Pq are the particl. e energy and canonical mo-
mentum, respectively. The mean rotation fre-
quency 0 is typically of the order of magnitude
of the gyrofrequency in the external magnetic
field, 0, , for large gyroradius particles. For
an ion ring most beam ions are of this type. %e
give a brief derivation of the energy principle of

ances on low-frequency magnetohydrodynamic
an ion ring. It is shown that, for sufficiently

agnetically stable can be driven unstable by
roidal magnetic field is discussed.

Sudan and Rosenbluth ' in a modified form. For
a plasma displacement $-exp(il8 —i~t), with &u

«0, , the linearized equation of motion of the
background plasma is

n; m, -~' $= -e,n, 6E+ 6j~ xB/c, (I)

where 5j~ is the perturbed plasma current. The
subscripts i, e, and b refer to background plasma
ions, background electrons, and beam, respec-
tively. Ne have assumed that the background
plasma is cold and that there is no magnetic field
in the toroidal, i.e., 0, direction. Therefore, no
equilibrium plasma currents appear in (I), al-
though the generalization to include these cur-
rents and B8 is straightforward. [In our cylin-
drical coordinate system (r, 9, z), the beam cur-
rent is in the S direction if Q) 0 and the external
magnetic field is in the -a direction. ] We have
also used the charge neutrality condition ebnb
+e,n, +e, n, =0. Now from Ohm's law 6E —i~)
xB/c = 0, and Faraday's law, we obtain 6B = V

x((xB). Employing this relation and Vx6B
=(4&/c)(6j~+ 6j~), where 6j~ and 6j, are the per-
turbed plasma and bean currents, respectively,
multiplying (I) by $* and integrating over the
total volume, we obtain

-&u'M+ 6W = u L+ J d'x 6j ~ 6A*/2c, (2)

where

6A= )xB,

M= ,' J d'xn, m; I (I', -.
6W. =-,' jd'xi 6B~2/4~

and

I.= —(ie, /2c) Jd'x n, B ~ t" + x (.
From the Vlasov equation we obtain the per-

turbed distribution function'' 6f=(eg, '/c)
x( Qr6Ae+-g), where f, '=- af, /&H, dg/dt= —i(e
—l Q) v ~ 6A, and d/dt is the derivative along un-
perturbed trajectories. Substituting 6j ~= e, Jd'& v
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bf, we find

(I/2c) Jd'x Dj~ ~ 5A*=-(e '/2c2)[Q2Jd~x d'vr') 5Ae~'f '+i((u* —lQ) ' J d xd'vfo' gdg*/dt ]. (3)

The beam particles in general have quite complex trajectories in a fully field-reversed system in
which the radial and axial widths are of the same order of magnitude and the beam temperature is
more than a few percent of the directed beam energy, In fact, it has been shown that in this case no
invariant of motion besides I' and H exists. In customary usage, the orbits are ergodic or stochastic
on each (P~, H) surface in phase space. In this case, direct integration over unperturbed trajectories
to obtain the last term in (3) is difficult, if not impossible. However, invoking the stochasticity of
these orbits we proceed by expressing

I= f d'x d—'v f0' gdg*/dt =m~ ' JdPedH V(Pe, H)fo' (gdg*/dt), (4)

where V(P~, H) is the four-dimensional volume in phase space accessible to a particle with given Pz
and H, and angular brackets denote an average over this volume. We write 0(t) = Q(Pe, H)t+ 8(t),
where Q is the time average of 6=(P~ —erAe/c)/2m, r' W.e conclude that Q is a function of Pe and H

alone by invoking the ergodicity property and replacing the time average of 8 by its phase average over
V. Introducing the notation v 5A=K(t) exp(-iat), where n=u —lQ, we obtain

t
(gdg+/dt ) =

~
(u —lQ (' (K*(t)exp(ia*t) J dt'K(t') exp(-iot'))

=
~

&u —lQ( 'exp(io, *t) J dt' exp(-io t') (K*(t)K(t') ). (5)

By the ergodic property again, the phase average in (5) may be replaced by a time average. Thus it
is clear that this term, called the phase-space autocorrelation, is a function of t- t' alone. However,
the ergodic property is not a necessary condition. In fact, in the limiting cases of low beam tempera-
ture and special geometry when the equations of motion are nearly linear, 0 is a function of &6 alone
and the autocorrelation is a function of t —t . We may therefore express it as the Fourier transform
of a power spectrum P(v) and it is clear that the very complex phase information in the individual tra-
jectories is irrelevant. We find

(g dg*/dt ) =
~
~ —lQ ~' exp(2yt) J (dv/2vi) P(v) ( v —o)- ',

where y = Imps.
Substituting (6), (4), and (3) in (2), we find

co'M + ul. —6W+ ig = 0,
where

5W= 5W„+(e Q2/2c2) f d xr2~ 5Ae~ fd vfo'+(e~2/47rm c2)(&u —lQ) f dPedH V(Pe, H)fo'

&Re f dvP(v)/(v —n)

and

H = -(e, '/4@m ~2c')(u —lQ) f dP edH V(Pe, H)fo'Im f dv P(v)/(v —n) .

(6)

(7a)

(7b)

(7c)

[The common factor exp(2yt) has been canceled. ] For ~«Q, , we can neglect I-, because it is of
order n, /n, , and the frequency dependence of 5W and H, because ~ «lQ. The power spectrum P(v)
has been computed for several cases and is found, as expected, to be peaked at the radial and axial
betatron frequencies. The betatron frequency is the frequency of the single-beam-particle motion in
the self-magnetic field of the beam. In the low-frequency limit 58'and A are real quantities and A
represents the energy absorbed by the resonant particles, i.e. , the particles for which the Doppler-
shifted frequency ~ —lQ =-lQ coincides with their betatron frequencies.

Given a normal-mode displacement $(x) the coefficients in (7) can be computed so that the mode fre
quency is given by

~ =+ [(5W —m)/I ]"'. (8)

The two values of & represent a splitting of the degeneracy between the two modes, one with phase ve-
locity in the direction of the beam current, and the other with phase velocity opposite to the beam cur-

696



VOLUME 41, NUMBER 10 PHYSICAL RKVIKW LKTTKRS 4 SEPTEMBER 1978

P(v) = r, 'n'(, 'B,'(p') [5(v - u) ~)+ 5(v+ao 8)]/2a',

Im jdvP(v)/(v —a) = mP(lQ), Ref dv P(v)/(v —e) = —2r, '0'lQ(, 'g'(p')/2a'(co&' —I'0').

As shown in Refs. 3 and 5, the kink is hydromagnetically unstable, i.e. , 5%&0, if ms'&l'O'. In both
papers the authors found that the dominant part of 5W behaved as (I'0' —~8') '. We find, from (10) and

(7b), that this is true, except in a narrow region determined by the thermal spread of the beam. Thus
we recover the same stability criterion as long as resonances are ignored. That is, modes with! l!
& I, =- (ro/a)(r/w)'~', where f is the field-reversal factor AB/B, evaluated at r =z =0, are unstable,
whereas those with higher l are stable.

When resonances are included, these conclusions are somewhat modified. Using (9) and assuming
an exponential rigid-rotor f,- exp[-(B —&Pe)/T], we find

(9)

(10)

R = —.'~"'(!g, ! ')B,'r, (E/7 )"'exp[-(E/7 )(1- I,'/I')'],

rent. It is easily seen that, for 6$'&0 and R 0, the former mode is unstable whereas the latter mode
is damped. If 5W &0, the mode is a hydromagnetic (as opposed to resonant) instability and the resonant
term R to lowest order affects only the real part of the frequency. Note that ~ is in general complex,
since the system is not self-adjoint. Also note that it is not necessary (or even possible) to obtain the
stability criterion by minimizing the energy with respect to $. In fact, instability occurs as long as R
t 0, i.e. , there is no absolute finite-Larmor-radius stabilization. "

As an example, consider a rigid kink mode g = $,r exp(il & —i art) in a large-aspect-ratio ion-ring sys-
tem r,/a»1. (Here, y, is the major radius and a is the minor radius. ) Assume that B=B,pa cp,

where p'= (r —r,)'+z' and y = tan '[(r —r, )/z]. The orbits in this system ax'e purely harmonic for low
enough energy, and the autocorrelation function behaves as costa(t —t') with ar 8'=e, B, r,Q/m, ca F.or
l0 we find

(12)+Q)g g (A/2 p =Op p+Q)g p+(dz, x=0

where B=B,a '(xy -yx)+B~s, B 20wj~/c, (us'

=eBOU, /mca, and &o~=eBr/mc. We assume the
axial velocity V, is constant. The two frequen-
cies of motion are given by w, = &co~+ [(2'&)'
+~8']"'. As +~-0 we recover a&, =+~~ and as
~~/~8- ~ we find ao, -m~, co ——wz'/v~. There-
fore, for a fairly large toroidal field B~/Bo ~ 1,
the two frequencies of motion split and the reso-
nance condition no longer holds. More specifical-
ly, the w —lA= —w, resonance occurs at increas-

where F. = 2~R'0' is the directed beam energy
and for the "bicycle-tire" geometry f/2w -—T/E.
Thus it is clear that modes with! I!-I, are most
affected by resonances. Since 5W - $,',B'r„we
see that modes with! I!& l, have a growth rate
which is exponentially small in comparison with

hydromagnetic modes if (7'/E)r, /a = (&/2v)r, /a is
less than unity. On the other hand, if this param-
eter is of order unity, modes with I'& I,'(I+T/E)
have growth rate comparable to that of a hydro-
magnetic instability.

Finally, we investigate the effect of a toroidal
magnetic field on these resonant instabilities.
For simplicity we consider a straight beam with

constant axial current density j,s and constant
axial field B~s. For motion perpendicular to the
beam current,

! ing values of l as B~ increases. However, the
growth rate of the mode nearest resonance scales
as 1/LB~- I/B~' for large B~. The up —lf1 =~
resonance occurs for decreasing values of l as
B~ increases and disappears altogether when B~/
B,&R/a.

The existence of this instability for B~ = 0 and
its stabilization for large B~ may explain the ex-
perimental results of Davis, Meger, and Fleisch-
mann on RECK-Christa, ' where a toroidal field
B~ ~ ~, is required to trap and stabilize the elec-
tron ring.

The above treatment is general enough to in-
clude field-reversed configurations with arbitrary
ion gyroradius. On the completion of this work
we learned that Seyler'and Freidberg' have used
a similar formalism to examine resonant effects
in the special case of an infinitely long 8 pinch in
the small-gyroradius approximation.

We are indebted to Professor D. Pfirsch for
many discussions that led us to this problem.
This work supported by U. S. Department of En-
ergy Contract No. EY-76-8-02-3170.
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Results of a first-principles renormalization-group calculation of the three-dimen-
sional critical interface in a gravitational field are presented. No artificial cutoffs to
prevent divergences are required. A detailed comparison with reflectivity measurements
of Wu and Webb is included.

The nature of the density (or composition) pro-
file of the diffuse interface separating two coex-
isting phases has been a topic of considerable in-
terest for some time. ' Recent theoretical devel-
opments have brought the question into sharp fo-
cus"; furthermore, one finds aspects of the
problem in common with those found in other
areas of current theoretical activity. The crucial
feature any theory must deal with is the continu-
Ous symmetry which corresponds to translation
of the nominal interface center. The associated
long-wavelength fluctuations, which correspond
to local translations, have sufficient density4 in
d = 3 to require a cutoff for a proper definition of
the interface width (even far below T, ).

A combination of mean-field and more refined
phenomenological scaling arguments' have led to
the expectation that the critical profile is univer-
sal. Universality in this case is taken to mean
that for, say, a single-component Quid one has
density given by

where p, t„~ a.re the bulk liquid (vapor) densities
and g is the bulk correlation length. The same

function m(z) is to describe the interface for all
fluids, binary liquids, anisotropic magnets, etc.
The expectation of universality has been rein-
forced by recent calculations'*' of the critical
profile in 4- & dimensions. Furthermore, experi-
ments" have not revealed any systematic non-
universalities. However, the presence of the
above class of long-wavelength fluctuations con-
siderably influences the nature of the criticality
and, in fact, causes the breakdown of the & ex-
pansion in bulk dimensionality d =3 (& =1). Hence
one must view with caution phenomenological pre-
dictions of universality in d = 3.

An alternative semiphenomenological approach
to the critical interface is contained in the work
of Buff, Lovett, and Stillinger, ' who consider
Only the contribution of the above-mentioned fluc-
tuations while neglecting the role of ordinary
critical fluctuations. Their work in fact implies
a nonuniversal profile having a width that diverges
in the limit of vanishing gravitational field.

En this Letter we report the results of a calcu-
lation of the critical interface in d =3 in which
we treat all fluctuations within one formalism.
At the end it is observed that the effects of the
"capillary wavelike" fluctuations separate from
the effects of other "ordinary" critical Quctua-
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