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A zero-frequency magnetostatic mode is shown to exist in a magnetized plasma. This
mode resembles the two-dimensional electrostatic convective-cell mode in many ways.
Electron cross-field test-particle diffusion due to thermally excited magnetostatic modes
exhibits the Bohm-like T/B behavior. This mode would enhance the electron heat and
momentum transport and could permit rapid spreading of plasma current.

Since the discovery of the zero-frequency elec-
trostatic convective-cell (vortex) mode' in two-
dimensional plasma, remarkable advances have
been made on the theory of plasma, transport by
collective processes. ' ' It has been demonstrat-
ed, both computationally and analytically, that
even for a plasma in thermal equilibrium the long-
lived, large-scale, low-frequency fluctuating
electric field can cause convection of the plasma
by Ex 8 drifts across the externally applied con-
fining magnetic field and thus cause cross-field
plasma transport well above the classical colli-
sional value. Evidence of plasma transport by
convective cells has also been observed experi-
mentally. " In this paper, we show that besides
the electrostatic convective cell, a zero-frequen-
cy magnetostatic mode can also exist in a mag-
netized plasma. In the plane perpendicular to the
externally applied static magnetic field, the par-
ticle motion (resulting from streaming along the
perturbed magnetic field line) of this mode re-
sembles that of the EX8 motion of the convective
cell. Similar to the convective cell, the long-
wavelength magnetostatic mode can persist for a
long time. The cross-fieM test-particle diffusion
from thermally excited magnetostatic modes ex-
hibits the Bohm-like T/B scaling.

For a uniform plasma immersed in a constant
magnetic field Bo=B,z there are two types of
modes which can propagate across the ambient
magnetic field (k, =0): (I) the extraordinary
mode' with dispersion relation N'=RE/S and
(2) the ordinary mode' with dispersion relation N'

Bv /Bt + v' Vv = —(Q'/m)E + pV v —vv (2)

where c is the speed of light, v is the electron-
ion collision frequency, and p. is the collective
shear viscosity' which will be calculated later
when we consider the particle motion in the plane
perpendicular to z. Because of their conslder-

=P (the notations are the same as those defined
in Ref. 8). Electrostatic waves are a subset of
the extraordinary mode in the limit that N' ap-
proaches infinity (S-0), and the convective cell
is one of them. The second type of mode, the
ordinary mode, is a purely transverse electro-
magnetic wave: The wave vector, the wave elec-
tric field (which is parallel to the external mag-
netic field) „and the wave magnetic field form a
right-handed orthogonal set, while the charge-
density variation is zero and only the z compo-
nent of the vector potential A is involved. As we
will show below, a zero-frequency mode similar
to the electrostatic convective cell exists in this
type of transverse electromagnetic wave. The
technique developed in Ref. 3 can be used here;
however, because of the complexity of the math-
ematics involved, it seems more appropriate to
use a heuristic approach instead. The equations
to be used in the analysis are the wave equation
for the perturbation A„

1 ~'A, 4z.g2+ g
g c2 gt2 gP

and the electron momentum equation in the z di-
rection,
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B,=ex(A, z) = vA, xg, (4)

ably smaller charge. -to-mass ratio, the ion v„
response can be neglected; therefore

g =net -v & = —nev,Z ~ Z1 ZI Z'

The perturbed field quantities are related to A,
through the following relations:

(@'/8m)„„= 'Tk-'c'/((o '+ k'c'),

(Z'/sr), „= ,'T—,

(12)

where the subscript h denotes the higher-frequen-
cy mode. The kinetic energy of the electron v,
motion in the wave is

(-,'nmv. ')„„='T(up'--/(~ p'+ k'c'). (14)

E, =-c '(aA, /st)z.

I inearizing Eq. (2), and assuming a phasor
exp[i(k r —&ot)] for the perturbed quantities, we
obtain the following dispersion relation:

N = 6 (k, (al),

with

e(k, (u) = 1 —(ep'/(u[(a+i(t + pk')],

where N'=k'c'/~' is the square of the refraction
index and vp'= 4mne'/m is the plasma frequency.
This dispersion relation allows both a well-known
high-frequency ordinary mode, '

1 z(v+ Pk )cop
h) =+ (h)p +k C )

h)p +O' C

and an extremely low frequency, purely damped
mode,

i(v+ pk')
1+(iop /k c

(The low-frequency, purely damped mode in an
unmagnetized plasma has been discussed by Ginz-
burg and Ruhadze. ") For a plasma in thermal
equilibrium, the power spectra for fluctuating
magnetic field and electric field can be calculat-
ed from the fluctuation-dissipation theorem"
and are given by

8 2 Q2 2 2 (io)

h)=——Im
2II la 0 0 —Ql E(k, ld))

where T is the temperature in energy units, both
h) and k are treated as real, and Im means taking
the imaginary part. Integrating expressions (10)
and (ll) with respect to frequency over the high-
frequency ordinary mode in Eq. (8), we obtain
the energy in magnetic field and electric field per

(fl /8v)g, g
= 2TQpp /((dp +k c ),

(z'/8w), , = o, (16)

and the wave kinetic energy in the perturbed elec-
tron v, motion is

(-'.nmv, ')„,= ,'Tk'c'/((up'—+k'c')

We see that the wave energy in the low-frequency
mode is also T/2. In addition, summing up the
contribution from the high-frequency mode and
low-frequency mode, we have T/2 energy in both
the electric field and magnetic field per k. This
result agrees with the prediction of equilibrium
statistical mechanics. "

The zero-frequency electromagnetic mode has
negligible electric fields, and so we may call it
a magnetostatic mode. Only a fraction, (1+&up'/
k'c') ', of the tota, l wave energy of the magneto-
static mode is in the electron v, motion, and col-
lisions and viscosity dissipate only this part of
the energy. It is understandable why the factor
(1+up'/k'c') ' occurs in the damping expression
in Eq. (9). Since the particle energy is small and
viscous damping is weak for the long-wavelength
mode, the large-scale static magnetic field per-
turbation can have an extremely long lifetime.
Therefore, the rapid particle motion along the
perturbed field should enhance the plasma trans-
port across the externally applied magnetic field.

We now estimate this eff ect by considering the
single test-particle motion due to this magneto-

At this point, it is worth mentioning that the en-
ergy in the mode is independent of the damping
mechanism for a plasma in thermal equilibrium.
The damping will affect the width of the spectrum
but not the total energy in it. This is true for all
modes in a thermal plasma including the low-fre-
quency mode of Eq. (9). Adding up Eqs. (12)-(14),
and dividing by 2 (two polarizations, ~ & 0 and u&

&0), we have T/2 of wave energy in each mode.
Integrating the field energy over the low-frequen-
cy part (denoted by subscript l) of the spectrum
yields
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static mode in the plane perpendicular to the ex-
ternal magnetic field Bpz. In the absence of per-
turbation, on a time scale much longer than the
particle gyromotion, the particle effectively
moves freely along the field line with some ve-
locity v, but with no mobility across the magnetic
field. In the field of the magnetostatic mode, the
linearized equation of motion perpendicular to z
is

Bvi/Bt = Q(v|X g + vog X Bi/B)

where Q is the cyclotron frequency. Since 8/&t
«

i Qi for the magnetostatic mode, Eq. (18) yields

v, =v,B,/B, = (v,/B, )(VA, x z). (19)

This is simply a mathematical statement of the

fact that the particle moves along the perturbed
field line and thus acquires a, velocity perpendicu-
lar to the external magnetic field Bpg. Note the
resemblance of this type of motion to the -c(Vy
x z)/B motion for particles in the electrostatic
convective cell.

The test-particle diffusion rate can be calculat-
ed by evaluating the time integral of the velocity
correlation function along the particle trajec-
tory":

D = f "(v,(t) ~ v, (t + ~)) d ~,

= (v, '/B, ') f "(B,(t) ~ B,(t + ~)) d7.

By adoption of the commonly used diffusing orbit-
al theory, "'"the magnetic field correlation can
be approximated by

(B,(t) B,(t+ ~)) = (2m) 'f(B'(k, ao)) exp(-Dk'~+i&a~) d~ d'k = (2w) 'f (B')g, exp(-Dk'~)d'k (21)

B I- 2wc
(23)

This test-particle diffusion coefficient has the
Bohm-like T/B scaling.

Note again the similarity between the diffusion
coefficient derived here and that due to the con-
vective cell in the guiding-center limit (~~,. «Q, ),

cT1/2 1 2 J I
1/2

Bp L ii 2gXD
(24)

where ) D is the Debye length. In fact, the mag-
netostatic mode and guiding-center convective
cell are analogous to each other. The correspon-
dence of the variables is current —charge and

magnetic potential A., —electrical potential cp.

At this point we would like to point out also
some differences between the two modes. First,
for a thermal-equilibrium plasma, the energy in
the magnetostatic mode is independent of the
strength of the external magnetic field Bp. On

the other hand, the energy in the convective cell

Because the contribution from the high-frequency
ordinary mode is negligible, only the low-fre-
quency spectrum is kept in Eq. (21). Substituting
the low-frequency energy in the thermal spec-
trum [as shown in Eq. (15)] for (B')y, we have"'

2 vp 2T
l LQP~

p )I

~here L
tt and I- are the linear dimensions paral-

lel and perpendicular to z, respectively. If we
average this expression over the Maxwellian
equilibrium distribution function, v, becomes
T/~, and we then have

is proportional to (1+re~,'/Q, '+v~, '/Q ) ' which
is a function of B,. In general, the diffusion co-
efficient in Eq. (24) has to be multiplied by a fac-
tor (1+~~,'/Q, '+to~ /Q,.') "'. Second, in a col-
lisionless plasma (v = 0), the lifetime of the long-
wavelength magnetostatic mode scales like k ',
whereas that of the convective cell goes like k '.
Third, the diffusion rate for the convective cell
is independent of the velocity of the particles. In
the magnetostatic mode, however, particles with
high parallel velocity diffuse faster than those
with low parallel speed. In particular, electrons
tend to diffuse much faster than ions. Since the
true particle diffusion has to be ambipolar in or-
der to maintain charge neutrality, the magneto-
static mode, like the lower hybrid mode, will
only give rise to enhanced electron shear viscos-
ity p. and electron heat conductivity z but not par-
ticle diffusion. Or, equivalently, the magneto-
static mode will cause only turbulent electron-
electron collisions. " Therefore, we may hypoth-
esize that

(25)

v =nDM.

In general, the contribution to the test-particle
diffusion from other portions of the spectrum
(e.g. convective cell, lower hybrid wave, etc.)
should be added to DM. The contribution from
the lower hybrid wave is difficult to obtain ana-
lytically and will not be discussed here. We shall
only compare the contributions from the convec-
tive cell and the magnetostatic mode. The ratio
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of the two test-particle diffusions for a thermal equilibrium plasma is

I lnT

in a ~up~~ strong magnetic field (0,'»+~, '), the contribution from convective cells is dominant over
that from magnetostatic modes by a factor (T/mc')"'. In a modest]y strong magnetic field (~fl

~

=~ )
as in most tokamaks, the contribution of magnetostatic modes would be larger than that of convective
cells for p)m, /M;, where p =4wnT/B . Comparing DM with the classical collisional contribution D„
= v, p, ', where p, is the e1ectron I armor radius, we have

DM O. T "' 4wnXD' "' [In(I-au, /2wc)]"'
LrI lnA

where lnA is the Coulomb logarithm. This ratio
is the order of unity for a wide range of plasma
parameters. For example, for n = 3x 10'4/cm',
B=4 T, L = 100 cm, L~~=2000 cm, and T = 10 keV,
D/MD„ is 1.1. We have to keep in mind that this
comparison is valid only for fluctuating fields at
the thermal level. In a confined plasma, the amp-
litude of electromagnetic fluctuations can easily
exceed the thermal level by several orders of
magnitude even for a very quiescent plasma. '
Therefore, it is possible that in fusion devices
the collective electron cross-field transport
would be much more pronounced than that dis-
cussed above and could result in enhanced elec-
tron heat conductivity and rapid spreading of cur-
rent. Generalization to the case of current-car-
rying plasma is underway and the results will be
reported in a forthcoming paper.

In conclusion, we have shown that a magneto-
static mode exists in a magnetized plasma. Elec-
tron cross-field test-particle diffusion due to
thermally excited magnetostatic modes exhibits
Bohm-like T/B behavior. This mode enhances
the electron cross-field heat conductivity and
viscosity.
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