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factors of this state require further study.
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FIQ. 4. Phase-space plot showing the formation of a
singular charge clump; Eo ——0.5, I"=0.05, (a) ~=25.0,
(b} ~=85.0.

In summary, the present study shows that when
the exact beam dynamics are followed it is pos-
sible for a runaway beam to become clamped.
This result confirms an earlier prediction' of
this effect based on a spatially averaged forma-
lism. The clamping process generates a runaway
wave, thus suggesting an efficient method' for
converting dc to ac energy. When wave damping
is present, a dynamic BGK equilibrium is ap-
proached in which the beam evolves into a singu-
lar charge clump that drifts through the plasma
at constant velocity. The stability a.zd limiting
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nant and nonresonant) electron dynamics taken
into account, there is no absolutely unstable
drift wave. They point out that the errors in pre-
vious theories are due to retaining only resonant
electron dynamics and/or using improper per-
turbation analyses.

Collisionless drift-wave eigenmodes in a sheared magnetic field are analyzed using
the %KBJ method. It is found that, for I~/L„& {L~/L„)~, ion-sound dynamics determines
the eigenvalues at small k~ and the eigenmodes are damped. However, at large k
electron dynamics dominates and the eigenmodes become marginally stable. For L /L„
&(L /L„), the eigenmodes are damped for all values of k . The critical value (L~/L„)
scales as (m;/me)~/4.

Recently, Ross and Mahajan' as well as Tsang
et aE.' have made an important contribution to the
theory of collisionless drift-wave eigenmodes in
a slab geometry with finite magnetic shear. In
contradiction to previous theoretical predictions, '
they found numerically that, with jull (both reso-
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While the numerical results obtained by these
authors appear correct, their analytical theories
seem dubious. Specifically, in Ref. 1, the au-
thors employed a variational principle to derive
the eigenvalue condition. The eigenvalue condi-
tion thus derived depends critically on the inte-
gral

Z= J „dx V'Z(x, /Ixl)/Ixl,
where x, = &uL, /k, v„Z is the plasma dispersion
function, ' and y(x) is a trial function chosen to
be exp(- inx'/2). Contrary to what the authors
have assumed [cf. their Eq. (8)], however, we
note that e always contains a positive imaginary
part and, therefore, the integral Itends to be
divergent. In fact, the divergence of I is much
more severe at larger k, ' where the modes are
marginally stable and the corresponding 0. values
are purely positive imaginary! (We have con-
firmed this by independent numerical work. )
Thus, at least for the marginally stable modes
the analysis is inconsistent. In Ref. 2, the eigen-
value problem was solved by the method of
matched asymptotic expansions. In the outer re-
gion ( (xi& ix, (), the authors neglected the elec-
tron Z function and, with the outgoing-wave bound-
ary condition, obtained a solution in terms of pa-
rabolic cylinder functions. The eigenvalue condi-
tion was then derived by matching the slope y'/y
of the outer-region solution to that of the inner-
region solution using the electron Z function and
the "constant- y" approximation. However, in
evaluating the inner-region p'/y, only the reso-
nant electron contributions [cf. the logarithmic
term in their Ec!. (2)] are included! This contra-
dicts their numerical work which indicates that
it is necessary to retain the full electron dynam-
is to obtain marginal stability. Thus, it is not
all clear why this calculation agrees with their
numerical work. Recently, Antonsen' has shown
the nonexistence of absolutely unstable eigen-
modes. His work, however, by its very nature,
cannot describe the weakly damped or marginal-
ly stable modes. Since such modes, by convec-
tive amplification, "' can still be dangerous to
plasma confinement, it is important to under-
stand their properties in detail.

In this Letter we present an eigenmode analy-
sis employing the %KBJ or phase-integral meth-
od. ' The WKBJ approach is motivated by the
large parameter, L, /L„. We find that there ex-
ists a critical shear scale length, (L, /L„), . For
L, /L„&(L, /L„)„ i.e., strong shear, the eigen-
values are determined by the turning points due

Q(x) =&++/4+(p~/lxl)&(~/lxl),

A. = —((d L /2h& L„)(k p + l —(d /(d),

t =(L./2L. )(l —~/~„),
e=((um, L, /(u m, L„)"', .

(2)

(4)

(5)

and the rest of the notations are standard. The
analytical continuation of this expression into the
complex plane t=x+iy is provided by ixi-(t')'I'.
The Riemann structure consists of two cuts origi-
nating at t=o, which we take along the positive
and negative imaginary axes, respectively.
There are two sheets, which we refer to as the
physical sheet, (x')'+ &0, and the nonphysical
sheet, (x')"' &0.

There are three pairs of turning points in the
complex t plane, each pair being symmetrically
located about the origin. The first pair corre-
sponds to the usual ion-sound (Pearlstein-Berk)
turning points:

+P = +(2i A' —iw 'p. e/2A).

The second pair, which also plays a role in the
%KBJ analysis, is induced by the electron dy-
namics via the Z function and its location is ap-
proximately given by

+E ~+f17 /lE/A. .

to the ion-sound waves (i.e., the Pearlstein-Berk
turning points)' and eigenmodes are found to be
damped for all k, '. For L, /L„&(L, /L„)„ i.e.,
weak shear, there is a critical perpendicular
wave number, k '. At long wavelengths, k, '

', the Pearlstein-Berk turning points again
determine the eigenvalues and there are only
damped eigenmodes. For k, ' k„', however, we
find that the eigenvalues are determined by a new

pair of turning points induced by the electron dy-
namics and, in this case, the eigenmodes are
predicted to be marginally stable. For this pa-
rameter range, it can be expected that the ana-
lytical theories of Refs. l and 2 do not properly
describe the marginally stable eigenmodes be-
cause both the trial function @= exp(- iax'/2) and
the "constant- y" approximation assumed implicit-
ly that the Pearlstein-Berk turning points deter-
mine the eigenmodes.

Let us consider, for simplicity, cold ions and
no temperature gradients. The corresponding
eigenmode equation is given by

[d'/dx'+ Q(x) ]y(x) = 0,
where
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The third pair normally is found further out in
thhe complex plane and plays no essential role in
th e WKBJ analysis. Its appropriate location is
given by

+B =+(2iA '+ in"'pe/2A). (8)

In deriving Eqs. (6) to (8), we have assumed that
f

pm~ j
&

f X f and f
2A+

j &
f

m+' pe j, which are usual,
ly satisfied. We note also that w/2&arg(A) & 0
and since ~v ~» Iince ~v„~~» ~ur,.„p and e are predominant-
ly real.

For small k, ' we have arg(A) &0. aP are locat-
ed in the fourth and second quadrants of the physi-
cal sheet, respectively. +B and +E are on the
nonphysical sheet. The corresponding Stok d'

the ou
gram is shown in Fig. l. For this Stokes pattpa em

e outgoing-wave boundary condition at large fx f

corresponds to taking dominant solutions (with
respect to aP) in regions (i) and (i)' and, hence,
subdominant solutions in (ii) and (ii)'. The eigen-
value condition is then determined by the physi-
cal Pearlstein-Berk turning point; i.e.,

f [Q(i)]+'di =(2n+ l)w/4; n= 0, 1. . . . (9)

The Stokes diagrams and eigenvalues presented
here have been determined by a code which uses
the eigenvalue condition [e.g. , Eq. (9)] to search
iteratively the complex frequency. plane. Once
the frequency has been determined, the resulting
Stokes diagram indicates the possible choices of
boundary conditions for the solution. ' We note

that, for the present case of small k ' th e exgen-
mades are found to be damped. As k, ' is in-
creased, arg(A) decreases and all three pairs of
turning points migrate toward the imaginary (y)
axis. (This tendency can be readily seen using a
perturbation theory. ) The properties of the eigen-
value problem, however, depend critically on
whether the magnetic shear is weak or strong.

In the weak-shear case, L, / L„&( L, / L„)„ there
exists a critical value of k, ', k ', at which the
Pearlstein-Berk pair +P and the electron-induced
pair +E coalesce at ~ C. The value of 0„,' can be
determined by the coalescence conditions Q(C)
=Q'(C) =0, and the eigenvalue condition f, [Q(t)+'
xdt=(2n+ 1)w/4. In the present analysis, k„'
depends on m, /m, . and L„/L, . For example,

L„=50 and k„,'p, '=0.045 for L, /L„=100. We note
that C lies on the imaginary (y) axis. Since Z(in)
= in 'exp(e') erfc(u), ' it then easily follows that
Imv = 0 and the eigenmode is marginally stable.

As k, ' is increased beyond k ', P and E again
separate. All three pairs of turning points stay,
however, on the imaginary axis. With increasing
, , E slowly migrates toward the origin and P

and B move in the opposite direction. The Stokes
diagram corresponding to this regime of large
A„' is shown in Fig. 2. Again, the outgoing-wave
boundary condition along x dictates that the solu-
tions be dominant in regions (i) and (i)' and, thus,
subdominant in (ii) and (ii)'. Therefore, the ei-
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FIG. 1. Stokes diagram for the case with k~ & k, ,
i.e., damped eigenmodes. The solid (dashed) lines are
anti-Stokes on the physical (nonphysical) sheet. &he
wavy line is the branch cut.

FIG. 2. Stokes diagram for the case with P
i.e., marginally stable eigenmodes. The rest is the
same as in Fig. 1.
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genvalue condition is.determined by E instead of
P; i.e., we have

I.O

= f857

0.0 I

J [Q(t)]'~'dt=(2n+1)n'/4; n=0, 1. . . . (10) —0

50 I I I I

Since E lies on the y axis, the eigenmodes con-
tinue to be marginally stable. Here, we should
remark that while the full Z function is well be-
haved along the y (imaginary) axis, the resonant-
electron contribution alone, in~'exp[- uP/(kII"
x v, 't')], is not. Thus, the coalescence of turn-
ing points as well as the eigenvalue condition,
Eq. (10), is pertinent to the case with the full
electron dynamics included.

In the strong-shear case, L,/L„& (L,,/L„)„
however, P and E do not coalesce for any value
of O'„'. The corresponding Stokes diagram is
similar to that shown in Fig. 1. The eigenvalue
condition is then given by EIl. (9) and the eigen-
modes are damped for all k, '. We note that, in
the present analysis, (L,/L„), is a function of
m, /m, only. We have computed (L,/L„), for the
n =0 eigenmode and a wide range of mI/m, . The
results are shown in Fig. 3 using a log-log plot.
Interestingly, the results indicate that (LJI „),
scales as (m, /m, )' '. In fact, the following is a
closely fitting scaling law:

(I.,/I „),=3(m, /m. )". (11)

Here, it is interesting to contrast the scaling
law of (L,/L„), given by Eq. (11) with the (m, /
m, )'/' scaling of L,/L„ found in previous per-
turbative' and convective amplification treat-
ments.

The WEBJ results presented here have also
been verified by direct numerical integration of
Eq. (1). TakingmI/rn, =1837 and L,/L„=50,
and using the WKBJ eigenvalue conditions [Eels.
(9) and (10)], we have computed oI of the n =0
eigenmode for a range of 4,'. Figure 4 shows
the analytical (WKBJ) results as well as those

0.5 —-0.0 I

—-0.02

'0 I

0.5
I

I.O
ky Ps

-0.05

FIG. 4. Plot of u„and cu; vs k& p~ .

obtained numerically using a shooting scheme
(identical to that in Ref. 1. The agreement is
sufficiently good. We have also examined the
case with I,/L„=100 and obtained better agree
ment, as is expected because the WKBJ approxi-
mation becomes better as the large parameter
L, /L„ increases. Finally, we have also con-
firmed numerically that for L, /L„& (L,/L„),
there is no transition to a marginally stable
mode; the eigenmodes are always damped. Using
a value of L,/L„=10, which is less than the criti-
cal value of (L,/L„), =19 (mI /m, =1837), we
have run the numerical shooting code for k,' up
to a large vaIue, k,'p, ' =20. Throughout this en-
tire range, the n =0 eigenmode remains damped
and the damping rate asymptotically approaches
a constant value.

In conclusion, we have shown that only for suf-
ficiently weak shear L,/L„& (L,/L„), —(m; /m, )' ',
do the collisionless drift-wave eigenmodes be-
come marginally stable for large k,'. (In the op-
posite limit, the modes are always damped. ) An

interesting consequence might be that for L,/L„
(L, /L„)„convective amplification of noise per-

turbations in the plasma could be enormous and

limited only by nonlinear effects.
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FIG. 8. A loo-log plot of (L /L„) vs m;/m .
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A zero-frequency magnetostatic mode is shown to exist in a magnetized plasma. This
mode resembles the two-dimensional electrostatic convective-cell mode in many ways.
Electron cross-field test-particle diffusion due to thermally excited magnetostatic modes
exhibits the Bohm-like T/B behavior. This mode would enhance the electron heat and
momentum transport and could permit rapid spreading of plasma current.

Since the discovery of the zero-frequency elec-
trostatic convective-cell (vortex) mode' in two-
dimensional plasma, remarkable advances have
been made on the theory of plasma, transport by
collective processes. ' ' It has been demonstrat-
ed, both computationally and analytically, that
even for a plasma in thermal equilibrium the long-
lived, large-scale, low-frequency fluctuating
electric field can cause convection of the plasma
by Ex 8 drifts across the externally applied con-
fining magnetic field and thus cause cross-field
plasma transport well above the classical colli-
sional value. Evidence of plasma transport by
convective cells has also been observed experi-
mentally. " In this paper, we show that besides
the electrostatic convective cell, a zero-frequen-
cy magnetostatic mode can also exist in a mag-
netized plasma. In the plane perpendicular to the
externally applied static magnetic field, the par-
ticle motion (resulting from streaming along the
perturbed magnetic field line) of this mode re-
sembles that of the EX8 motion of the convective
cell. Similar to the convective cell, the long-
wavelength magnetostatic mode can persist for a
long time. The cross-fieM test-particle diffusion
from thermally excited magnetostatic modes ex-
hibits the Bohm-like T/B scaling.

For a uniform plasma immersed in a constant
magnetic field Bo=B,z there are two types of
modes which can propagate across the ambient
magnetic field (k, =0): (I) the extraordinary
mode' with dispersion relation N'=RE/S and
(2) the ordinary mode' with dispersion relation N'

Bv /Bt + v' Vv = —(Q'/m)E + pV v —vv (2)

where c is the speed of light, v is the electron-
ion collision frequency, and p. is the collective
shear viscosity' which will be calculated later
when we consider the particle motion in the plane
perpendicular to z. Because of their conslder-

=P (the notations are the same as those defined
in Ref. 8). Electrostatic waves are a subset of
the extraordinary mode in the limit that N' ap-
proaches infinity (S-0), and the convective cell
is one of them. The second type of mode, the
ordinary mode, is a purely transverse electro-
magnetic wave: The wave vector, the wave elec-
tric field (which is parallel to the external mag-
netic field) „and the wave magnetic field form a
right-handed orthogonal set, while the charge-
density variation is zero and only the z compo-
nent of the vector potential A is involved. As we
will show below, a zero-frequency mode similar
to the electrostatic convective cell exists in this
type of transverse electromagnetic wave. The
technique developed in Ref. 3 can be used here;
however, because of the complexity of the math-
ematics involved, it seems more appropriate to
use a heuristic approach instead. The equations
to be used in the analysis are the wave equation
for the perturbation A„

1 ~'A, 4z.g2+ g
g c2 gt2 gP

and the electron momentum equation in the z di-
rection,
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