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Example of Color Screening
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An example is given of an admissible configuration of SU(B) gauge fields that completely
screens an intense source of color and that has a lower energy than the corresponding
Coulomb confi.gur ation.

Quantum chromodynamics has become the lead-
ing theory of the strong interactions because of
its successful interpretations of scattering data
and of hadron spectra. The absence of quarks
and gluons is thought to be due to its being an un-
broken non-Abelian gauge theory with a running
coupling constant that increases with distance. If
this is the reason for confinement, then some
sign of it should be visible on the classical level.

The natural starting point for a classical ex-
planation of confinement is Gauss's law which
constrains the response of a gauge field to a
charge. Yet one of the allowed responses in both
Abelian and non-Abelian theories is the Coulomb
configuration. Because Coulomb forces diminish
with the square of the distance, they do not lend
themselves to an explanation of quark confine-
ment, although they do not exclude one.

It has been shown, however, by Mandula' that
the Coulomb configuration is classically unstable
in an unbroken SU(3) gauge theory when the ex-
ternal color charge g'Z/4w exceeds 2. It is there-
fore possible that the actual response of a gauge
field to a strong charge may not be the Coulomb
solution and that the forces between strong charg-
es may have a different dependence on the dis-
tance between them.

The present paper presents some evidence in
support of this possibility. Ao example is given

The structure constants of SU(3) are represented
by the antisymmetric form f„,and g is a coup-
ling constant. For p. =1,2, 3 these equations are
the equations of motion that govern the time evo-
lution of initial configurations of gauge fields.
But for p, = 0, Eq. (2) is a restriction on what ini-
tial configurations are admissible. This con-
straint, known as Gauss's law, requires the di-
vergence of the color-electric field E,' =I'," to
equal the total color density which is the sum of
g'j, ' and f,~,A, 'E,':

v F = g'g, '+f„,X, z, . (3)

It is the last term in this equation that allows for
the possibility of color screening.

The energy of the system is given by the Ham-

of a configuration of SU(3) gauge fields that (i) sat-
isfies Gauss's law, (ii) completely screens a
strong color charge, and (iii) has a lower energy
than the corresponding Coulomb solution when
the charge g'Z/4m is greater than 5.6.

The field equations satisfied by the field strengths

Z.u"= Sua. " e "A.u+ f-.„A,uX."

of an SU(3) gauge theory in the presence of an ex-
ternal color current j," are
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H =2g 'f d'x(E, '+B, ), (4)

ls
94 g'Z'

c 1024 4~~ (10)
where B.'= 2~...F,"is the color-magnetic field.
The term f„,X, E, may be used to screen the
charge g' j,' thus diminishing its electrostatic en-
ergy. Because the gauge fields A.," are massless,
the additional energy due to the creation of the
screen is merely its electric and magnetic ener-
gy

Suppose that the external color current j," is
static and spherically symmetric and that only
its third component is nonzero:

q.~ (x, t) = 6,~6. ,p(~).

A field configuration that satisfies Gauss's law
and that has a lower energy than the Coulomb
configuration for Z & 5.61 will now be exhibited.
This will be done by exciting the fields E, and A,
in such a way that the external charge g'j, ' is
canceled on every spherical shell. If all other
fields except E, are zero, then Gauss's law (3)
reduces to the pair of equations

V E, =X, E,

Then the Coulomb solution to the field equations
consists of a radial, static, color-electric field
Q(x, t) =E,(r)r that satisfies the differential equa-
tion

E,'+2E, /z = g p,

V E3=g p —A2 ~ E,.
If the vectors E, and X, are taken to be

E,(r, &, y, 0) = (3ar,)"gr sine e ""j

(12)

(i3)

P =Of' e

where u = r/r„ then Z, (r) is given by

E,(y) =24g'ar, 'r '

x [1-e "(1+u+u /2+u /6+u /24)]. (8)

The energy of the Coulomb solution is

H, = (2g') 'fd'x E,' = (837/4) wa'g'r, '. (9)

where the prime means d/dr. All other fields
are zero except for A,' of which E, is the gradi-
ent. If p is of the form

@,(r, &, @,0) = 2(3a/~, )"'gr since ""(p, (14)

E"+2y 'l"' —6r 'I" =g'ar'e ", (i6)

where y is the third unit vector in the triple (x,
8, Fp), then Eq. (12) becomes

2V ~ E =gpI',
where P, (cos0) = 2(3cos'8 —1) is the second Le-
gendre polynomial. Since the right-hand side of
this equation is independent of cp, E, will be per-
pendicular to P and thus X, ~ E, will vanish. By
construction (13), the divergence of E, is zero.
Thus Eq. (11) is satisfied identically. If the sub-
stitutions E, =V( and $(r, 0) =E(r)P, (cosa) are
made, then Eq. (15) becomes

The external charge Z = j p d'x has the value Z where the formula (7) was used for p. The solu-
=96pay'O'. In terms of Z, the Coulomb energy H, tion of this equation that is regular at both r =0

and at y =~ is

E(y) = —144g aro r [1—e "(1+u+u'/2+u /6+u /24+u'/144)]. (17)

The apparent singularity at r = 0 is fictitious. The
function I' decreases as y ' at large y, and so E,
falls off as y . The charge Z is therefore com-
pletely screened.

The energy of this screened configuration is

A comparison of this result with the expression
(10) shows that the energy H, of the screened
configuration is less than that of the Coulomb
configuration when the color charge exceeds

H = (2g') 'fd'x [E,'+ E,'+ (V x A2)'], (is) g'Z 320
47t

' 57' (20)

and has the value

Z 9 gZ
s =

2y,o 2560 4p
(19)

which is about 5.61.
The fields of this example do not constitute the

configuration of lowest energy, and the solution
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of which they are the initial conditions is not
static.

Noted added. —While this paper was being ref-
ereed, an interesting article on color screening
by Sikivie and Weiss appeared. ' The mechanism
of color screening is more complicated when the
source of color is a dynamical field rather than
a prescribed external current. In that case the
analysis of this paper as well as that of Sikivie
and gneiss must be extended so as to take into ac-

count pair creation, gauge rotations of the quark
field, and the kinetic energy of the quark field
which depends on its covariant derivatives.

I am grateful for conversations with D. Finkel-
stein, G. 't Hooft, and J. Mandula.

'J. Mandula, Phys. Lett. 678, 175 (1977).
P. Sikivie and N. Weiss, Phys. Bev. Lett. 40, 1411
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Vfe construct exact monopole and dyon solutions in a renormalizable SU(%+1) gauge
theory broken down to SU(N) SU(l) by one Higgs multiplet in the adjoint representation.
The solutions saturate the Bogomolny lower bound and are spherically symmetric with
respect to the angular momentum operator J= i r x V—+T, where T spans the maximal
SO(3) subalgebra of SU(N+1). The solutions are obtained after a remarkable factoriza-
tion of the relevant coupled nonEinem second-order radial equations into a product of
coupled linear first-order equations.

The work on magnetic monopoles in spontane-
ously broken gauge theories, initiated by 't Hooft
and Polyakov' has led to the prediction of stable
magnetically charged particles in most unified
models of the fundamental interactions. Signifi-
cant progress has been made through the intro-
duction of topological considerations, which
make it possible to classify the allowed mono-

pole solutions in gauge theories. This leaves as
an important unresolved aspect the existence
and construction of explicit nonsingular solutions
to the nonlinear field equations. We have ad-
dressed ourselves to this last question and will
show that because of a factorization of the rele-
vant coupled nonlinear second-order radial equa-
tions into a product of linear first-order equa-
tions, it is indeed possible to construct analytic
monopole solutions. This factorization property
seems to be one of the most intriguing aspects
of our solutions.

Consider a renormalizable theory with one

Higgs field 4' =4 'A, , in the adjoint representation.
For a purely magnetic, time-independent solu-
tion' the Hamiltonian density is

X =(16&) (Tr(B+D4)'+ 2 Tr(B ~ DC) +@V(c')j.

It is easy to construct a Higgs potential V (4') that

gives rise to a vacuum expectation value, @'„
which breaks SU(N+1) down to SU(N)U(1) as is
one of the two possibilities. ' The topologically
conserved charge is associated with the U(1)
factor of the residual symmetry. We are inter-
ested in the Bogomolny-Prasad-Sommerfield lim-
it"' g-0, in which the symmetry breaking re-
mains but the scalar particles become massless.
In this case any solution to the first-order partial
differential equations 8 =+ D@will saturate the
lower bound on the energy, which is directly re-
lated to the topological charge:

E =+ lim [r2f(dQ/8n') Tr(B„C')].
~ OO

We look for solutions which are spherically sym-
metric with respect to J=-ir&&+T, where T
is a representation of some SO(3) subalgebra of
SU(N+1). To obtain the radial equations we adopt
the formalism of Wilkinson and Goldhaber, ' who
show that the general Ansatz may be taken as

eA = [M(r, r) T]xr/r, —4 = 4 (r, r),
where M and 4 are unknown matrix functions.
The quantities B and Dc depend only on deriva-
tives with respect to y and t because the angular
derivatives in V = r(6/&r) +r x rx v combine with
the x& T term of the Ansatz to yield commutators
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