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FIG. 5. Interferogr am of Z discontinuity target. Ar-
row marks the position of the original discontinuity be-
tween aluminum and polyethene. = . . ' iE = 23.6 J. Time is
same as ln lg.F' 2 Laser beam is incident from the
right.

absence of sizable magnetic fields under condi-
tions of uniform illumination. Contrary to sug-
gestions in the literature, discontinuity targets
failed to show enhanced magnetic fields or the
predicted density discontinuity.

The authors would like to acknowledge the ex-
tremely helpful discussions with the National
Research Laboratory Laser Plasma Interaction
Group, in regard to measurement techniques,
and the support of the Rutherford Laboratory
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rise to }.arge linear magnetic fields along the
line of the discontinuity due to the density jump
crossed with the axial temperature gradient.
However, measurements on targets with a poly-

(Z =3) and aluminum (Z =13) discon-
it f ldtinui. y s ow't showed no evidence of discontinui y xe s,

and additionally showed a reduction of an or er
of magn~ u e xn't d

' thermoelectric fields. Addition-
ally no ev~ ence wd e was obtained for a discontinuity
f om the interferometric data (Fig. 5), a result
which is consols entent with predictions of the MEDUS

code for the profile of the blowoff plasma for
materials of different Z.

In conclusion, we have presented results with
h' h patial and temporal resolution of spatial
profiles of magnetic fields in laser-produce

These fields are in good agreement
with theoretical predictions and some s o s s

bl e ersed structure due to reversed
't rofile.densit radients in the off-axis density pro ~ e.

Measurements of microballoon arge s s
dense y gra i
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Drift Alfven Waves in Tokamaks

'tson J. D. Callen, P. J. Catto, and Julius Smith0'd' ' '
n Oak Ridge National Laboratory, Oa z ge, nPusion Energy Division, Oa z g

tions of the finite-beta drift-wave radhal e~enm qode e uations has
1 -b t egime and identified with thevil dam ed in the low- e a regimep

his branch and the usual electrostatic rane ashear Alfven wave. T xs rane
f ts introduces an instability which islisionless p asma.1 Includirg trapped electron effects xn ro uc

potentially harmful to plasma confinement.

Th ecent interest in the possibility of ex-T e recen
s ortplainsong e anl ' the anomalous electron heat transpor

in tokamaks as caused by magnetic field Quc-

tuations associated with drift waves' has resulted
in attempts" to improve earlier work by Catto
et al.~ for sheared magnetic fields. The equa-
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tions used permit both unstable drift and unstable
shear Alfvdn waves' in the local approximation.
Previously, retaining magnetic shear resulted in
finite-beta modifications of the drift wave, where
beta is the ratio of plasma pressure to magnetic
pressure. In collisionless plasmas, this drift
branch reduces to the stable collisionless drift
wave of electrostatic theory" as P-O.

In this Letter we report the discovery of the
collisionless shear Alfvdn eigenmode in the
presence of a sheared magnetic field. We find
by numerical integration of the eigenmode equa-
tions that both the drift and shear Alfven waves
are stable in the collisionless slab limit con-
sidered. Consequently, both modes that can be
unstable according to the local theory are always
stable in a sheared magnetic field. However, if
trapped electrons are included both the drift and
shear Alfvdn branches can be unstable. The
trapped-electron drift mode' is unstable in the
electrostatic limit and is found numerically to
be gradually stabilized by finite-beta effects.
This result agrees with previous analytic pre-
diction. '" On the other hand, the trapped-elec-
tron shear Alfvdn mode is more unstable as beta
increases and thus more harmful to the corifine-
ment of a high-beta tokamak.

For simplicity we adopt a slab plasma geometry
with the inhomogeneity in the x direction. The
magnetic field is assumed to be 8 =B(S+xy"/L, )
where y and z are unit vectors in the y and z di-
rections and L, is the shear length. Such a model
suffices to demonstrate the existence of radial
eigenmodes even though it neglects the coupling
of poloidal Fourier harmonics due to toroidal ef-
fects. We choose to locate the hi~=0 surface at
x =0, where k~~=kx/L, denotes the parallel wave-
length. For m, /m, . (P (1, we need introduce
only the parallel component of the fluctuating
vector potential A

~i
in addition to the fluctuating

electrostatic potential p. We seek solutions of
the form y(x) exp(- icot+iky) and 8 „(x)exp(- irut

+ iky). Using Ampere's law and the neutrality
condition, we obtain the coupled equations for
(p(x) and A(((x):

(d,& (d
, —O'. IA»= «I . —

«)v,

where

~=p,. '(1-r,)/(r, -r, ),
X = p,. '(~ —a&~)/(no+ e~)(I, —I',),
v= n&uL, /kc,

a = cP;(no+ v~)(ro —I', )L,m,./kT, ,

P, =4mNT, /Bm, v~=kcT, /eBL„,
I'„=I„(b)exp(- b), b = (kp,.)',

p, ' = m, T,c'/(.eB. )', w = T,/T, ,

I„ is the modified Bessel function, N is density,
and T is temperature. The p, 'x' term is the usual
shear term due to the ion inertia and p, is defined
by

p'=T, r, [m,. p,.'(r, —r, )] '(k/L, cu)'.

For collisionless drift Alfven waves, 0, is given
by

x(v(o+(ug) '(I', —I', ) ', (3)

where $, =~/kiin, =coL, /xkv„~, =(2T,/m, )'~', and
Z is the plasma dispersion function.

Equations (1) and (2) reduce back to the cor-
responding equations derived in Ref. 4 in the
long- perpendicular-wavelength limit, i.e. , 5 «1.
It is important to retain finite-ion-gyroradius
effects, because for P-0 the collisionless drift
wave was found to be less stable as 6 increases. "

Since we are looking for unstable modes with
finite spatial extent in the x direction, one of the
boundary conditions for g and A

~i is that they both
vanish at large x. The symmetric property in x
of Eqs. (1) and (2) requires the existence of two
types of eigenmodes: even (in x) y, odd (in x) A ~~,

and vice versa. Thus the parity of y and A
~i

is
imposed as a boundary condition at x =0. How-
ever, when we follow unstable modes to the sta-
ble region using Eqs. (1) and (2), no localized
solution exists for real x. It is then necessary
to detour the path of numerical integration in
the complex x plane such that q and A

~i of the
same branch of the mode fall off to zero at in-
finity. A simpler way to avoid this difficulty is
to include the ion Z function in the perturbed ion
density. In that case, Eq. (2) becomes

( vs~
, -xi' =@ - gx'+ c,)iq— (2)

( v~~(,.g(g,.), ~ cp =(~+ 0, +m)icp-
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where

M=I', [1+ $;Z((;)] /p (I,- I', ),

g,. = u&/0 i'm, = rul.,/xke, ,

and g,.'=2T, /m, . With Eqs. (1) and (4) we can
impose the boundary condition that both q and
A I~ go to zero at sufficiently large x.

Our numerical procedure is an extension of the
method used in the electrostatic problem. ' In
fact, the results reported in Ref. 6 were dis-
covered when we attempted to check whether our
finite-beta code could properly reproduce the
electrostatic limit. In the finite-beta case, the
code is checked against the following analytic
dispersion relation, ~ derived from Eqs. (1) and

(2) by assuming that 5 = 0 and e, is independent
of x, and demanding y'(x=0)=0:

p, v+ j(1—4x'v)'~'+ (x'/p) = 0,

where &'=&+a, . Our code employs a constant
&x, in Eq. (2) and reproduces eigenvalues in agree-
ment with the prediction of Eq. (4) within 1/0 for
beta up to 10%.

In the absence of magnetic she'ar, i.e., kI~

= const, Eqs. (1) and (2) can be reduced to a dis-
persion relation of drift and shear Alfvdn waves
coupled by finite-ion-gyroradius effect. How-

ever, when magnetic shear is retained, the shear
Alfvbn waves have never been recovered. The

difficulty is inherent to the local dispersion rela-
tion of the shear Alfvbn wave: It is impossible
to satisfy ~-&~~@A everywhere since k~I is a func-
tion of x while u„=8/(4m', .)'~' is essentially a
constant. Because of this, one would expect the
shear Alfv6n wave in a sheared magnetic field
to have a dispersion relation very different from
that given by local theory.

Numerically solving Eqs. (1) and (4) with 0',

given by Eq. (3), we find two types of eigenmodes
with different characteristics. The first type
(the drift branch) is evolved from the electro-
static drift mode" ' gradually. Except for small
b, this branch becomes more stable as beta in-
creases. Another branch corresponds to the
shear Alfvbn mode and is heavily damped for
small beta. As beta increases, the branch be-
comes less stable.

In Fig. 1, we plot the growth rates of the drift
mode and shear Alfvdn mode as functions of P,
for even y and odd A~~. Figure 2 shows plots for
odd y and even A ~~. The parameters are v =1
and l.,/1.„=16. The real part of &o for the drift
mode decreases compared with ~g as b increases.
In contrast, the real frequency of the shear Alf-
ven mode stays around co~, almost independent
of b. The mode frequency as a function of kp,
for these two modes is plotted in Fig. 3 at a
fixed P,. for even y and odd A ~~. Similar conclu-
sions hold for odd p and even A ~~.
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FIG. 1. Growth rates normalized by ~~ as functions
of P; for drift modes (solid lines) and shear Alfven
modes (broken lines) in a collisionless plasma with
even y, oddAt~, v =1, andL, /L„=16.

FIG. 2, Growth rates normalized by ~~ as functions
of P& for drift modes (solid lines) and shear Alfven
modes (broken lines) in a collisionless plasma with
odd y, evenA. ,~, v =1, and L,/1.„=16.
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FIG. 3. Real part of ~ as a function of kp; for the
drift mode and the shear Alfven mode.
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In Fig. 2, we omit the investigation of odd-g,
even-A ii modes with kp,. = 0 because such modes
are not localized; they can only exist by coupling
to outside MHD (magnetohydrodynamic) solutions.
This is beyond the scope of this Letter.

The kp,.=0 case for even y and odd A
~~

is of
particular interest because it is the only one for
which analytic solutions of Eqs. (1) and (2) are
available. ' 4 All of these analytic results predict
that finite-beta effects will further stabilize the
mode. Numerically, we found that the stabilizing
effect is so small that it can hardly be observed
from Fig. 1. When P &L„/I, , the mode is far
less stable than would be predicted by the analy-
tic results. A plot of the eigenfunction shows
that at this high beta the radial eigenmode is
rapidly decaying spatially for x &x+ - p,

' ', which
is the turning point distance in the e-lectrostatic
equation. This spatial decay occurs because high
beta (&L„/L, ) results in a barrier, thereby re-
ducing the amount of wave energy leaked to the
region where ion Landau damping occurs, thus
making the mode less stable. Similar conclu-
sions can be drawn from the WEB form of solu-
tion of Egs. (1) and (2). For kp, &0, the drift
mode is further stabilized by finite-beta effects,
as expected. ' 4

Because the real part of + for the drift mode
and the shear Al.fvdn mode with kp,. =0 is close
to co~, both modes seem to be degenerate, %e
cannot find a shear Alfven mode with kp,. = 0
which is heavily damped at low beta. This con-

FIG. 4. Growth rates normalized by v, /L„as func-
tions of P; for the trapped-electron drift wave (solid
lines) and the trapped-electron shear Alfven wave
(broken lines) with even y, odd A~~, 7 =1, L,/L„=16,

q =2, v~=10, q, =1, and s=e„=0.2, where v, =(T,/
m;)' is the ion sound speed. Note that for current
values of P -1%, the shear Alfven branch may domi-
nate'the drift branch.

elusion is backed up by a careful search of the
relevant region of ~ space using the Cauchy in-
tegral method.

%hen the trapped-electron response is included
(as in Ref. 9, except that the Landau resonance
of the circulating electrons is ignored since it
is usually small compared with the trapped-
electron response), we find that the electrostatic
trapped-electron mode is gradually stabilized by
finite-beta effects as beta increases from zero.
This is illustrated by the solid lines in Fig. 4 for
a typical set of parameters: 0 inT, /0 ln&=1,
L„/R = r/R = 0.2, q —2, v ~, = 10 ', and I.,/L„= 16,
where v+, is the collisionality of the electrons,
defined as the ratio of the mean effective colli-
sion frequency to the mean bounce frequency of
trapped electrons. For this set of parameters,
the trapped-electron drift mode is completely
stabilized for p, & 3%, and the shear Alfven mode
is stable for P,. &0.4+. Around P,. =1%, the typi-
cal value of beta for present experiments, the
growth rate of the shear Alfven mode is already
larger than that of the drift mode and continues
to increase with beta. These results on the finite-
beta, trapped-electron, drift Alfvbn instabilities
are by no means final because of the crudeness of
our model equations. Even though a similar
model is used in the careful analysis by Tang
et al. ,

' there is singularity in these eigenmode
equations. A more detailed and careful study is
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in progress.
In conclusion, we have demonstrated numerical-

ly the existence of shear Alfvbn waves in tokamak
geometry. Both the drift wave and the shear
Alfvbn wave are stable in a collisionless plasma.
When trapped electrons are included, both waves
can be unstable. However, their behaviors with
beta are different. While the drift mode is sta-
bilized by effects of beta, the shear Alfvdn mode
is destabilized. Of course, when the poloidal
beta approaches 1/s, the simple concentric, cir-
cular flux-surface model used to calculate the
trapped-electron response and the slab model
underlying Eqs. (1) to (4) are no longer valid.
For these reasons, the high-beta ends of the
curves in Figs. 1, 2, and 4 are not very accurate
but should still represent the beta dependence of
the usual drift and the shear Alfvbn branch in a
tokamak with P S 5'%%uo.
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Incipient Superfluidity in Liquid 3He above the Superfluid Transition Temperature
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(Received 5 May 1978)

The large zero-sound attenuation just below the transition temperature Tc to a super-
fluid state in liquid He is anticipated above the transition by an excess attenuation over
that for a normal Fermi liquid. The excess is greatest at T, but can be readily dis-
cerned at temperatures several percent above T~. The excess is largest near melting
pressure and exists adjacent to both ~He-A and He-B.

The attenuation of zero sound' ' in a normal
Fermi liquid is frequency independent and pro-
portional to T'. We have discovered that in liquid
'He at temperatures above the transition temper-
ature T, the zero-sound attenuation rises above
the extrapolated value for normal zero-sound at-
tenuation. The excess attenuation is very signifi-
cant, readily measurable, and can be discerned
at temperatures as much as 10% above T,. That
such an effect might exist for zero sound was
pointed out some time ago by Paulson, Johnson,
and Wheatley. 4 A small effect above T, was ob-
served in static magnetization by Paulson, Ko-
jima, and Wheatley' and in viscosity coefficient
by Parpia, Sandiford, Berthold, and Reppy, ' the
measurable effects extending above T, by only a

tenth of a percent of T,. It is possible that the ex-
cess zero-sound attenuation reflects the fluctua-
tion superfluidity in fermion systems first dis-
cussed by Thouless' (equilibrium properties) and

by Emery' (transport properties). In particular,
Emery" has stressed the possible importance of
fluctuation superfluidity to an understanding of
the properties of liquid 'He, while fluctuations in
superconductors have proven to be of great inter-
est." Although there does not yet exist a theory
of the excess attenuation which we describe here,
we hope that this work will stimulate a theoreti-
cal interpretation so that, in analogy to supercon-
ductivity, a deeper understanding of the super-
fluid state will result.

Our measurements were made in a nuclear
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