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Are the Stationary, Axially Symmetric Einstein Equations Completely Integrable?
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A linear eigenvalue problem in the spirit of Lax is constructed for the stationary, axial-
ly symmetric Einstein equations. It is conjectured that this entails the complete integra-
bility of the system.

ds, '= h;~ dx'dx, i, k=1, 2,

ds2 h6g~dx dx ) 0 ) 5 3) 4)

where X„and h are only functions of x3 and x4.
As a result of Einstein's equations R„,=O the
symmetric 2x2 matrix X obeys (~'—= —deth &0)

a'(TX 'B.h. ) =0, a=3, 4.

Equation (2) is to be supplemented by some equa. -

Up to now nobody has found a systematic way to
solve Einstein's equations even in the stationary,
axially symmetric case. Recently Geroch' and
Kinnersley have discussed a remarkable infinite-
parameter group of transformations leaving the
equations invariant. This shows that the system
of nonlinear partial differential equations is a
very special one. In fact I conjecture that they
constitute a "completely integrable Hamiltonian
system" similar to the well-known sine-Gordon
equation (cf. Scott, Chu, and McLaughlin'). This
conjecture is based on the existence of a linear
eigenvalue problem in the spirit of Lax (cf. Ref.
3) with the nonlinear partial differential equations
as compatibility equations.

Under the assumption of stationarity and axial
symmetry the metric may be reduced to the form'

ds'=dsx -ds2

with

g =x'+ix', g =x' ix', —

Eq. (2) becomes (with p,
&

———Bp, /9$, etc. )

(~et ~)T+(~t tT), =o,

to be supplemented by

7 —=0.
LL

(4)

(5a)

(5b)

Equation (5b) means that ~ may be taken as the
real part of a holomorphic function. I et o be the
corresponding imaginary part defined through o

&

=i~&, vT= —i,~&. Since (~-iv)&=0 the functions ~

and —o may be used as coordinates x3 and x4.
Any traceless 2X2 matrix z may be expanded

as

with Q, =iv„Q, = v„Q, = vs constituting a basis
for the Lie algebra sl(2, R). The linear space of
the h's corresponding to the linear space sl(2, R)
can be equipped with the SL(2,R)-invariant met-

tion for h, which may, however, be easily inte-
grated once ~ is known' and will therefore be dis-
regarded in the following.

Introducing the traceless matrix p, given [with
v. =('; .')] by

P,= 2 'T 0'2$ )

and complex coordinates
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a'=I u=-'TrK'=-(a')'+(u')'+(u')'.

In particular

and e obey the equations

A
g

+ 2V' T(A Cose + 2'T T(A = 0,

Ay+2'f TpACOSG+g7 TgÃ=0,

o. ,—,+ ~A~'sino. —Re[~ '7, (Z/A) sina],

(8a)

(8b)

with q = I because JL(,
= —T o,ko,~=-7 'det~= I.

By choosing the square root appropriately the
invariants A =—v'q &' and 2 =-v'qY' are complex con-
jugates af each other. The angle o. defined through

coso. =e, e-, /IAI'

turns out to be real.
As a consequence of Eq. (5) tbe functions A, 2,

~

=0. (8c)

For ~=A =1, Eq. (8c) reduces to the Euclidean
sing-Gordon equation, and Eqs. (8a) and (8b) be-
come trivial in that case. The Eqs. (8) are equiv-
alent to Eq. (5a) for p..

Let g be a two-component SU(1, 1) spinor, nor-
malized to P~o, g = 1, then the following linear
equations yield Eqs. (8) as compatibility condi-
tion

+=cg,

—p2Q g
+ pz7 TT A sine, -y g Ae'

[y(s)Ae ' ", 2in, —,'i~ '~ , (A—/A)—sinn]—)

(9b)

where y(s) is tbe function

1 —2s((x+i~)
y(s) =

1 2
. =y(s) ', sE A. (10)

Equations (9a) and (9b) represent a linear "eigen-
value problem" (with sw 8 as the "eigenvalue" ) in
the spirit of Lax (cf. Ref. 8). For ~=A =1 these
equations reduce to the ones known for the sine-
Gordon equation' (or rather a Euclidean version
thereof).

The asymptotic behavior of c corresponding to
asymptotically Minkowskian solutions of Ein-
stein's equations is given by

on the eigenvalue s is rather more involved. Sec-
ondly the asymptotic behavior of e does not sup-
port freely traveling waves as asymptotic solu-
tions for g. Yet c„is still simple enough to
nourish some hope that a method similar to the
"inverse-scattering method" (cf. Ref. 3) may be
developed to reduce the solution of the nonlinear
equations (8) to a sequence of linear problems.

A detailed account of the derivation of Eqs. (9)
will be given elsewhere.

I am indebted to Dr. P. Breitenlohner, Dr. K.
Pohlmeyer, and Dr. S. Schlieder for clarifying
discussions.

y„(S = 1 —2is(p +is)
1+2is (p iz)-

employing cylindrical coordinates for the Minkow-
skx metrzc ds =dt'-p dp -dp -dz'.

This shows that the Eqs. (9) differ in two re-
spects from the standard form of the Lax equa-
tions (cf. Refs. 3 and 5). Firstly the dependence
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