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liquid T ' behavior. This deviation is several
times larger than the expected fluctuation effect,
and does not appear to be related to the super-
fluid transition. As a result, one cannot make
a reliable background subtraction to isolate the
effects of superQuid fluctuations. '
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We present a general approach for applying real-space renormalization-group methods

to dynamic critical phenomena. In particular, we discuss the two-dimensional kinetic
Ising model treating the interaction between blocks of spins as a small parameter.

We present here a general formulation for ap-
plying the real-space renormalization-group
(BG) method' to critical dynamics. While the
analysis will be in terms of two-dimensional
kinetic Ising (KI) models, "we believe the ap-
proach to be applicable to higher dimensions and
models with order parameters with continuous

symmetries.
Consider a set of spins (oj on a, two-dimension-

al triangular lattice. We assume that these spins
interact via the nearest-neighbor Ising Hamilton-
ian

—H[o]=X Q out cr;,
&», j&

correlation functions that can be constructed
from the operator

G, ,~(t) = exp(o, t)5, ,.P[o],

where &, , sets a» =o»' on all lattice sites, t is
time, and -i D, is the Liouville operator con-
structed from H for fully microscopic models.
If we are dealing with an Ising model, thenD
must be constructed by hand. We can construct,
for example, the spin-spin correlation function
from G. ..(t) by multiplying by ot and o, ' and
summing over all 0 and a'.

In this paper we will study the KI model. " In
this case the two primary properties satisfied by
D or D[o I o'] in matrix notation are

and the equilibrium probability of having a parti-
cular spin configuration {vj is given by P(o) Tr "D[ql o']P[o'] = 0
=e j/Z, where Z is the partition function. In
dynamical problems we are interested in the time- (where Tr means to sum over all spins o') to

(2a)
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insure that the system decays to the equilibrium state characterized by P[v], and the symmetry rela-
tion

D[v I
v']P[v'] =P[o]D[v'lv].

We also introduce the adjoint operator D[vl v'] =D[v'Iv]. The precise form of D that we analyze is

D[vl v'] = k D, [vl v'l.
l~ j.

D,k I
v'] = g-)5~v)v &..."'W[v)],

D,[vI v']=- Q ,'pv—,v, 'A. ..""w[v„v,), .
&is j&

D,[vlv') = - Z y v)v;v)'vg'Ao, a~I "'I&[v),vgl,
&f,j&

(2b)

(Sb)

(Sc)

(3d)

where &, , I '~'"' sets o, =v, ' except for the spins at sites i, j, etc. , W[v„v~,.] is defined such that
W[v„v». . .]P[v] is independent of the spins at sitesi, j, etc.

In static critical phenomena we implement the real-space RGby introducing an operator T[ulv) which
maps a group of clustered spins v onto a new block spin u. If we demand that »"T[ulv] =1.then we ob-
tain a probability distribution for the block spins

P[ul =» T[u I v]P[v]. (4)

We can rewrite this as a transformation between Hamiltonians, H[v]-H[u]. The dynamical generali-
zation of this procedure corresponds to finding a mapping from D onto the dynamical operator D&
which governs the dynamics of the block-spin variables. We start by proposing that the appropriate
generalization of G„~(t) corresponding to the u spins is

G„q (t) = Tr Tr 'T[ulv]T[u'Iv']Go (f) = Tr'T[ul v] exp(Dot)T[u'lv)P[v].

In this case we "renormalize" the o and o' spins separately. Initially

G„„(&=0) =G„„=»T[ulv)T[u'lv)P[v) (6)

If we follow Niemeijer and van Leeuwen' (NvL) and choose T according to the majority rule" [Eq. (13)
below with f=1], then

T[ulv]T[u'lv] =&„,„T[ulv) (7)

G~'=&u. u»u) (8)

More generally we assume that the T's can be chosen such that (8) holds and the corresponding P[ u]
is interpreted as an appropriate probability distribution.

As a first step in obtaining the mapping D,-D& we introduce the Laplace transform

G&&i(z) =- i J dt e+' 'G»t(t) = Tr'T[ulv]R(z)T[u'Iv]P[o),

where R(z) =[Z-iD,] ' is the resolvent operator. One can then show' that G».(z) satisfies the equation

Tr" (Z&p, p -D[u I

u))GENT@'(~)

=Gp p' (10)

(11a)

(11b)

where the matrix D[ul u'] is given explicitly by

D[ulu'] =D'[ ul u']+D'[ul u'],

D [ u I u') P [u'] = (T[ul vl(D oT [u' I v])&,

D'[ul u']P[u']= ((D.T[ulv—))R(~)(D.T[u'Iv])&+»" »"'((o.Tfulv])R(z)T[ul v]&Gpp '(~)-
x&T[u'I v)R(~)(D. T[u'lv])&, (11c)
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q'(a) =&(~& -fa.), (13)

where o~ is the sum of the three spins in a cell
and o, is the product of the same three spins.
While the "majority rule" choice for T [f=1, N
= 2 in (13)] may seem most natural, it is not a
very good choice from a dynamical point of view.
The reason why it is poor is that it mixes slow
degrees of freedom (to flip the sign of ar requires

502

where () indicates an average over P[a]. One
can show directly that D[ p( p'] satisfies (2). Thus
D[plp'] satisfies the important property that it
is compatible with the new equilibrium probability
distribution P[tl]. We offer D [p) p'] as defined by
(11) as the appropriate dynamical operator for
the p lattice.
D[ g I g'] is frequency dependent through the

term D'. An important question from a RG point
of view is whether D[ p,

~
y,'] can be well approxi-

mated by a Markovian or frequency-independent
operator. Physically we expect that D [ p, ~

p'] will
be Markovian (or approximately so) only if the
0 degrees of freedom mapped onto the p spins
are dynamically slower than the rest of the 0 de-
grees of freedom. This means that all of the 0'

degrees of freedom we average over must decay
to zero before the p spins move if we are to have
a near-Markovian D[ p. l p,']. The degree to which
D[g ~ p'] is Markovian will depend strongly on the
choice of T[p, ~ a].

We now want to compute D[p ~
p'] in a perturba-

tion expansion analogous to the static cumulant
expansion of NvL. ' Thus we break the lattice up
into cells with three spins per cell. We then
treat all intercell couplings as being O(e). If we
start with the usual KI model [(3) with P =q = 0]
we find that the q and P terms are generated (with
other terms) at O(e') and turn out to have a major
effect on the fixed-point structure of the HG re-
cursion relations. Thus we keep the P and q
terms from the beginning in our analysis. The
other terms generated at O(e') do not appear to
be relevant. In the calculation P and q terms are
broken up into intracell and intercell pieces and
the intercell pieces are treated as being 0(&).
The first step in the calculation is to choose the
appropriate T [ p. ( a]. Assume that T [p ( a] can be
written as a product of factors for each cell,
where, for the ith cell,

T'[~l a]=2[1+~&q g(a)],

and p~ is the block spin of the ith cell. If p& is
symmetric under interchange and odd under flip-
ping of the three spin in the ith cell, we can write

flipping the sign of three spins) with fast degrees
of freedom (to flip the sign of a, only requires
flipping the sign of any single spin in the cell).
A clean separation between fast and slow cell
variables can be accomplished by first solving
the eigenvalue problem

E. D'[ala'] (&(a') =-&& 4&(a), (14)
~at

for each cell, where D' is the dynamical operator
[of O(e')] corresponding to a particular three-
spin cell, and then choosing y(o) in T to be the
lowest nontrivial (X~ W 0) eigenfunction. The re-
sulting eight orthonormal eigenfunctions can be
ordered with increasing eigenvalue ~&. ~, =0 cor-
-responds to f, =1 and is the smallest eigenvalue.
The next smallest eigenvalue is associated with
an eigenfunction of the same form as (13) but with
N and f depending on K, a. , p, and q.

With this new choice for T we are projecting
onto the two slowest modes (A., and A.,) within a
cell. We can then compute D[p) p'] in an expan-
sion in the intercell coupling. We find, including
terms O(e), that D[p ) p,'] has exactly the same
form as D[a ia'] (it is Markovian) but with the
new parameters K', o.",P', q' given by the recur-
sion relationsx' =&„x, x =(K,P, q), b.„=2(A„),',
where (), indicates an average over P[a] for a
single cell, A» =a+, (o), A8 =A+W, [a,]A, =g, '(g)
x Wo[a, ], and &„=X,/a. where a, is a spin in a
cell and W, [a&] is the single-cell component of
W[a, ] introduced in (3).

These results are correct to O(e). Non-Marko-
vian behavior' appears only in O(e~). The overall
time decay of the inverse Laplace transform of
D' is governed by the eigenvalues ~&&~,. This
decay modulates the evolution of the p variables
(which decay with the rate A. ,). To the degree
that the ratio A. ,/&, is small' one can also ignore
any non-Markovian effects in O(&').

In Table I we show the results of an analysis of
the recursion relation discussed above. We have
listed only the fixed-point solutions corresponding
to 0(K*(~ and introduced the ratios Rg =P/n
and R, =q/~. The main points of interest are as
follows: (i) The Rq* =0, R,"-~ fixed point is
the stable fixed point. (ii) The parameter f that
appears in the eigenfunction P, scales to zero
near the stable fixed point. (iii) The dynamical
critical index & associated with the slowest mode
(the P variable) defined by z8=- Ink/Inb (where b

=~3for a triangular lattice in two dimensions) is
relatively insensitive to the particular fixed-point
values of a.', p, and q. The value z =1.6V is rea-
sonable when compared to high-temperature-ex-
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TABLE I. Fixed-point values for R, R8, and. R, and
associated critical indices.

0.212
0.213
0.212
0.212

0
—0,186

0
—0.605

0.840 1.678
1.703 1.703
0.836 1.672
1.672 1.672

—0.185
—0.323
—0.064
—0.064

1.753
1.778
2.239
2.239

pansion' results z = 2 and the rigorous' lower
bound ~ =1.75.

The HG dynamics drives f, to a fixed-point
form proportional to o~ and eliminates the o, com-
ponent. This ties in with our physical argument
above that 0, should be associated with rapidly
varying degrees of freedom. We can, in this
case, understand why our static results are poor
(as given by the exponent v in the table). The
"majority rule" choice with f =1 leads to the
"optimal" first-order statics. ' Clearly the fixed-
point value f =0 will lead to an inferior treat-
ment for the statics.

Finally, we note that there exist other schemes'
for applying the real-space RG to dynamics. Nei-
ther of these methods addresses the question of
whether the dynamical operator D, approaches a
fixed-point form under iteration of the RG.
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