Critical Field in Time-Dependent Geminate Recombination

J. Noolandi and K. M. Hong

Xerox Research Centre of Canada, Mississauga, Ontario L5L 1J9, Canada

(Received 14 April 1978)

We present the analytical solution of the time-dependent Onsager problem, and show that above a critical value of the electric field the long-time behavior of the distribution function changes from diffusionlike to purely exponential. The possibilities of observing the effect experimentally are discussed briefly.

Onsager's calculation¹ of the probability of geminate recombination in the presence of an electric field has been widely applied to experiments both in liquids and solids.^{2,3} However, less work has been done on understanding the time-evolution of the neutralization process. Recently we have obtained the analytical solution of the time-dependent Onsager problem,⁴ and we have discovered a new critical-field effect in the long-time behavior of the escape probability. The effect is of interest for the theory of diffusion-controlled reactions involving charged particles, and may be observable in fluorescence-quenching experiments.

In this Letter we show that for low electric fields the long-time behavior of the distribution function and related quantities is diffusionlike. However for fields greater than a critical value the long-time behavior becomes purely exponential. We find that a simple combination of material parameters and the critical field is given by a universal constant.

We consider the motion of two particles, carrying charges q_i and q_j , in an applied electric field \mathbf{E} , and we choose a frame of reference such that particle *i* is at the origin and the *z* axis is in the direction $(q_iD_j - q_iD_i)\mathbf{E}$, D_i and D_j being the diffusion coefficients. The probability density $\rho(\mathbf{r}, t)$ that the second particle is at position \mathbf{r} relative to the first is determined by the Smoluchowski equation

$$\frac{\partial \rho}{\partial t} = D \nabla \cdot \left[e^{-W} \nabla (e^{W} \rho) \right], \tag{1}$$

where

$$W = -\left(\eta r_c / r + 2F\mu r / r_c\right) \tag{2}$$

is the potential energy divided by $k_{\rm B}T$. Here $D = D_i + D_j$; $r_{\rm c} = |q_iq_j|/\epsilon k_{\rm B}T$ is the Onsager length,¹ with ϵ the dielectric constant of the medium; $\mu = \cos\theta$, with θ the polar angle; $\eta = -\operatorname{sgn}(q_iq_j)$ (i.e., $\eta = +1$ if the Coulomb interaction is attractive and $\eta = -1$ if it is repulsive); and finally,

$$F = \left| \frac{q_i D_i - q_j D_j}{D_i + D_j} \right| \frac{E r_c}{2k_{\rm B}T}$$
(3)

is a dimensionless quantity which gives a measure of the applied field and the relative drift velocity between particles.

We assume that initially the particles are separated by a distance r_0 and that the line joining them makes an angle θ_0 with the polar axis. Then the distribution function $\rho(r, \mu, t | r_0, \mu_0)$, normalized to unity, satisfies the initial condition

$$\rho(r, \mu, 0|r_0, \mu_0) = (2\pi r_0^2)^{-1} \delta(r - r_0) \delta(\mu - \mu_0), \quad (4)$$

where $\mu_0 = \cos\theta_0$. We choose the boundary condition

$$\rho(a, \mu, t | r_0, \mu_0) = 0 \tag{5}$$

at the origin, corresponding to a perfectly absorbing sphere of radius a, and the usual condition for a well-behaved solution

$$\lim_{r \to \infty} \rho(r, \mu, t | r_0, \mu_0) = 0.$$
 (6)

From now on we shall use $r_c/2$ as the unit of length and $r_c^2/4D$ as the unit of time. Introducing the transformation

$$\rho(r,\mu,t|r_0,\mu_0) = \frac{\exp\{\frac{1}{2}[W(r_0,\mu_0) - W(r,\mu)]\}}{2\pi(rr_0)^{1/2}}h(r,\mu,t|r_0,\mu_0)$$
(7)

and writing

$$h(r, \mu, t | r_0, \mu_0) = \sum_{l=0}^{\infty} R_l(r, t | r_0) T_l(\eta \mu) T_l(\eta \mu_0),$$
(8)

we find that Eq. (1) is separable, and the generalized Legendre polynomials of Onsager, $T_1(\mu)$, satisfy

$$(d/d\mu)[(1-\mu^2)dT_l/d\mu] + (F\mu + \lambda_l)T_l = 0,$$
(9)

© 1978 The American Physical Society

46

(10)

with λ_i as the eignevalues. The radial function R_i satisfies

$$\frac{\partial R_{l}}{\partial t} = \frac{\partial^{2} R_{l}}{\partial \gamma^{2}} + \frac{1}{\gamma} \frac{\partial R_{l}}{\partial \gamma} - \left[\left(\frac{F}{2} \right)^{2} + \frac{\lambda_{l} + \frac{1}{4}}{\gamma^{2}} + \frac{1}{\gamma^{4}} \right] R_{l}$$

with the initial condition

$$R_{i}(r,0|r_{0}) = r_{0}^{-1}\delta(r-r_{0}).$$
(11)

We now write $R_l(r, t | r_0)$ in terms of an eigenfunction expansion

$$R_{l}(r,t|r_{0}) = \sum_{n} a_{n} R_{ln}(r) \exp(-u_{n}t), \qquad (12)$$

so that Eq. (10) becomes

$$R_{ln}'' + \frac{1}{\gamma} R_{ln}' + \left(E_n - \frac{\lambda_l + \frac{1}{4}}{\gamma^2} - \frac{1}{\gamma^4} \right) R_{ln} = 0, \qquad (13)$$

where the coefficients a_n are determined by the initial condition Eq. (11), and $E_n = u_n - (F/2)^2$ are the eigenvalues. The summation sign in Eq. (12) is used in a generalized sense since part of the spectrum is continuous. Equation (13), with the boundary condition

$$R_{in}(a) = 0 \tag{14}$$

corresponding to Eq. (5), is identical to the radial Schrödinger equation for a particle moving in the hard-core potential

$$V(r) = \begin{cases} \lambda_{1}/r^{2} + r^{-4}, & r > a, \\ \infty, & r \le a. \end{cases}$$
(15)

From quantum mechanics⁶ we know that a potential of this type has no bound states for $\lambda_l > -\frac{1}{4}$. In this case, we have only scattering states with the continuous eigenvalue spectrum $[0, \infty]$. In terms of the Laplace transform \tilde{R}_l it can be shown that for $\lambda_l > -\frac{1}{4}$ the only singularity is a branch cut from $-\infty$ to $-(F/2)^2$. For the case $\lambda_l < -\frac{1}{4}$ an infinite number of bound states appear. From the minimum of the potential given by Eq. (15), we obtain a lower bound to the eigenvalue spectrum

$$E_n > - (\lambda_1/2)^2. \tag{16}$$

It follows that in this case, in addition to the branch cut from $-\infty$ to $-(F/2)^2$, \tilde{R}_1 has an infinite sequence of poles in the interval

$$-(F/2)^{2} < s_{n} < -(F/2)^{2} + (\lambda_{l}/2)^{2}.$$
(17)

In the absence of an applied field, F = 0 and $\lambda_l = l(l+1)$. As F is increased, poles appear when the first eigenvalue, λ_0 , reaches the value $-\frac{1}{4}$. In order to determine the critical value of F we solve Eq. (9) using an expansion in terms of or-

dinary Legendre polynomials and we find

$$F_c \simeq 1.27863.$$
 (18)

The behavior of the first three eigenvalues with increasing F is shown in Fig. 1. For $F > F_c$, the long-time behavior is dominated by the largest pole $s_0 < 0$, giving the new result

$$\rho \sim \exp(-|s_0|t) \quad (t \to \infty, \ F > F_c) \tag{19}$$

which we will later compare with the corresponding result for $F < F_{c^{\circ}}$

In order to determine the long-time behavior for $F < F_c$ we need to solve Eq. (1) with the appropriate boundary and initial conditions. Using the standard definition of the Laplace transform we find for the solution

$$\tilde{R}_{l}(n, s \mid r_{0}) = \frac{\overline{y}_{1l}(r_{<}, s_{F})y_{2l}(r_{>}, s_{F})}{N_{l}(s_{F})}, \qquad (20)$$

FIG. 1. First three eigenvalues of Eq. (9), calculated for different values of the parameter F. The dashed line shows the position of $F_c \simeq 1.278$ 63.

where

$$\overline{y}_{1l}(r) = y_{1l}(r) - \frac{y_{1l}(a)y_{2l}(r)}{y_{2l}(a)}, \qquad (21)$$

s is the Laplace transform variable, $s_F = s + (F/2)^2$, and

$$r_{<} = \min(r, r_{0}), \quad r_{>} = \max(r, r_{0}).$$
 (22)

The Wronskian of the two linearly independent solutions y_{1l} and y_{2l} to Eq. (13) is denoted by $W(y_{1l}, y_{2l})$ and

 $y_{1l}(r) = K_{\nu}(r^{-1})[1 + O(s_F)],$

$$N_{l}(s_{F}) = -rW(y_{1l}, y_{2l}).$$
⁽²³⁾

The two solutions are given by⁷

$$y_{1l}(r) = y_{2l}(s_F^{-1/2}r^{-1}), \qquad (24)$$

$$y_{2l}(r) = \sum_{n=-\infty}^{\infty} (-1)^n c_n I_n(r^{-1}) K_{n+\nu}(s_F^{1/2}r), \qquad (25)$$

where the coefficients c_n and the characteristic index ν are determined from the recursion relattion

$$[(2n + \nu)^2 - \lambda_1 - \frac{1}{4}]c_n = S_F^{1/2}(c_{n+1} + c_{n-1}).$$
 (26)

The long-time behavior of the solution is determined from the small- s_F expansion. We omit the details of the straightforward calculation and give the results, for $s_F^{1/2}r \ll 1$,

(27)

$$y_{2l}(r) = s_F^{-\nu/2} \left[1 - \frac{1}{2} \gamma s_F \ln s_F + O(s_F) \right] G(\nu) I_{\nu}(r^{-1}) + s_F^{-\nu/2} \left[1 + \frac{1}{2} \gamma s_F \ln s_F + O(s_F) \right] G(-\nu) I_{\nu}(r^{-1}),$$
(28)

where

 $G(\nu) = 2^{2\nu - 1} \Gamma(\nu) \Gamma(1 + \nu)$ (29)

and

$$\nu = (\lambda_1 + \frac{1}{4})^{1/2}, \quad \gamma = [4\nu(1 - \nu^2)]^{-1}.$$
 (30)

Using Eqs. (20)-(23) and Eqs. (27)-(30), as well as a standard theorem in Laplace transform theory,⁸ we get

$$\rho \sim e^{-(F/2)^2 t} / t^{1+\nu} \quad (t \to \infty, \ F < F_c), \tag{31}$$

which is to be compared with Eq. (19). Since ν $\simeq \frac{1}{2}$ for l = 0 and $F \ll F_c$, Eq. (21) reduces to the standard diffusive solution for a distribution moving with a constant velocity $(qED/k_{\rm B}T)$. For $F > F_c$, Eq. (19) shows an entirely different behavior, which does not appear to have a direct physical interpretation. From Eqs. (3) and (18), typical values of the critical field are 74 kV cm⁻¹ for a solid such as a-Se at room temperature,² and 22 kV cm^{-1} for a liquid hydrocarbon such as n-hexane at 300 K.² From numerical work we find that the exponent s_0 in Eq. (19) starts to deviate appreciably from $(F/2)^2$ only for much higher values of F. For $F \simeq 20$, we get $s_0 \simeq 0.8(F/2)^2$. However, the absence of the power law for F $> F_c$ may become evident at lower values of F.

Because of the complicated singularity structure of the Laplace transform for $F > F_c$, we have not carried out the small-s expansion of the escape probability analytically, and we are unable to provide a simple expression for the corresponding scavenging-reaction probability⁹ for $F > F_{c*}$. It may be that the transition from diffusion to rate-controlled behavior with increasing field can best be observed by monitoring the recombination of charged particles in real time, as in a fluorescence-quenching experiment.

We would like to thank L. Marks for writing the necessary computer programs and for assistance with the numerical analysis.

¹L. Onsager, J. Chem. Phys. <u>2</u>, 599 (1934), and Phys. Rev. 54, 554 (1938).

²See articles by W. F. Schmidt, R. G. Enck, and G. Pfister, in *Photoconductivity and Related Phenomena*, edited by J. Mort and D. M. Pai (Elsevier, New York, 1976).

³C. R. Gruhn and M. D. Edmiston, Phys. Rev. Lett. 40, 407 (1978).

⁴K. M. Hong and J. Noolandi, to be published.

⁵L. Onsager, thesis, Yale University, 1935 (unpublished).

⁶L. D. Landau and E. M. Lifshitz, *Quantum Mechanics* (Pergamon, New York, 1965), 2nd ed., Sect. 35, p. 113.

⁷W. Bühring, J. Math. Phys. (N.Y.) <u>15</u>, 1451 (1974). ⁸G. Doetsch, *Introduction to the Theory and Application of the Laplace Transformation* (Springer-Verlag, New York, 1974).

⁹A. Mozumder, J. Chem. Phys. 61, 780 (1974).