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Critical Field in Time-Dependent Geminate Recombination
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%e present the analytical solution of the time-dependent Onsager problem, and show
that above a critical value of the electric field the long-time behavior of the distribution
function changes from diffusionlike to purely exponential. The possibilities of observing
the effect experimentally are discussed briefly.

Onsager's calculation' of the probability of gem-
inate recombination in the presence of an electric
field has been widely applied to experiments both
in liquids and solids."However, less work has
been done on understanding the time-evolution of
the neutralization process. Recently we have ob-
tained the analytical solution of the time-depen-
dent Onsager problem, 4 and we have discovered
a new critical-field effect in the long-time be-
havior of the escape probability. The effect is
of interest for the theory of diffusion-controlled
reactions involving charged particles, and may
be observable in Quorescence-quenching experi-
ments.

In this Letter we show that for low electric
fields the long-time behavior of the distribution
function and related quantities is diffusionlike.
However for fields greater than a critical value
the long-time behavior becomes purely exponen-
tial. We find that a simple combination of mater-
ial parameters and the critical field is given by a
universal constant.

We consider the motion of two particles, car-
rying charges q; and q;, in an applied electric
field E, and we choose a frame of reference such
that particle i is at the origin and the z axis is in
the direction (q;D; —q;D;)E, D; and D; being the
diffusion coefficients. The probability density
p(r, t) that the second particle is at position r
relative to the first is determined by the Smolu-
chowski equation

where

~= —(nr, /r + 2Fp, r/r, ) (2)

where pp coagp We choose the boundary condi-
tion

p(a, p, t lr„p,) =0

at the origin, corresponding to a perfectly ab-
sorbing sphere of radius a, and the usual condi-
tion for a well-behaved solution

is the potential energy divided by k~&. Here D
=D;+D;; r, = Iq;q; I/ekBT is the Onsager length, '
with & the dielectric constant of the medium; p,

=cos8, with 8 the polar angle; q = —sgn(q;q;)
(i.e., q =+1 if the Coulomb interaction is attrac-
tive and q = —1 if it is repulsive); and finally,

qD; —qD; Ex',
D; +D, 2kB'T

is a dimensionless quantity which gives a meas-
ure of the applied field and the relative drift ve-
locity between particles.

We assume that initially the particles are sepa-
rated by a distance xp and that the line joining
them makes an angle ~p with the polar axis. Then
the distribution function p(r, p, t I r„p,), normal-
ized to unity, satisfies the initial condition

From now on we shall use r, /2 as the unit of
(1) length and r,'/4D a,s the unit of time. Introducing

the transformation

and writing

a(, p, t Ir„p,,) =+It, (r, t Ir,)T, (qp.)T (W,),
1=p

we find that Eg. (].) is separable, and the generalized I egendre polynomials of Onsager, '
T~(p), satisfy

(d/dp)t(], —p)dTg/dpj+(&p+X))T, =0,
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with X, as the eignevalues. The radial function A& satisfies

2 (10)

with the initial condition

R, (~, t l~,) =Q„a„Rg„(r)exp(-u„t),

so that Eq. (10) becomes
1

pI 1/A)+41R)„"+-Ag„+ E„— 2
——

4 R)„=0,r y'

(12)

(13)

where the coefficients a„are determined by the
initial condition Eq. (11), and E„=u„—(E/2)' are
the eigenvalues. The summation sign in Eq. (12)
is used in a generalized sense since part of the
spectrum is continuous. Equation (13), with the
boundary condition

We now write R, (x, f h'o) in terms of an eigenfunc-
tion expansion

I dinary I.egendre polynomials and we find

E,=1.278 63.

The behavior of the first three eigenvalues with
increasing E is shown in Fig. 1. For E&E„ the
long-time behavior is dominated by the largest
pole s, & 0, giving the new result

p exp(- Is, l&) (t-~, E&I',) (19)

which we will later compare with the correspond-
ing result for I' &I',.

In order to determine the long-time behavior
for E &E, we need to solve Eq. (1) with the ap-
propriate boundary and initial conditions. Using
the standard definition of the Laplace transform
we find for the solution

R,„(a)=0

corresponding to Eq. (5), is identical to the ra,di-
al Schrodinger equation for a particle moving in
the hard-core potential

3 a(f &q sF)X2l('Y&q sy)
Ri (a 8 'vo) = (2o)

From quantum mechanics' we know that a poten-
tial of this type has no bound states for && & —4.
In this case, we have only scattering states with
the continuous eigenvalue spectrum [0, ~]. In
terms of the Laplace transform A& it can be
shown that for ~& & —4 the only singularity is a
branch cut from —~ to —(E/2)'. For the case
~, & - 4 an infinite number of bound states appear.
From the minimum of the potential given by Eq.
(15), we obtain a lower bound to the eigenvalue
spectrum

It follows that in this ease, in addition to the
branch cut from —~ to —(E/2)', R, has an in-
finite sequence of poles in the interval

—(&/2)' & ~.& —(F/2)'+ (~ l/2)'.

In the absence of an applied field, I =0 and &,
=l(l+ 1). As E is increased, poles appear when
the first eigenvalue, ~o, reaches the value —4.
In order to determine the critical value of I' we
solve Eq. (9) using an expansion in terms of or-
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FIG. 1. First three eigenvalues of Eq. (9), calcu-
lated for different values of the parameter E. The
dashed line shows the position of I ~ = 1.278 63.
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where

—
( ) ( )

3',&( )32&( )
X (a)

(21)

The two solutions are given by'

X,i(~) =X,~(sz "'~ '),

r, = min(x, r,), r &
= max(r, r,). (22)

The Wronskian of the two linearly independent
solutions y» and y» to Eq. (13) is denoted by
li'(y„, y„) and

&)(sz) = ~~b,i,v, i) (23)

s is the Laplace transform variable, s& =s+ (E/
2)', and

(25)

[(2n+ v)' -x, ——,']c„=s~~'(c„„pc„,). (28)

The long-time behavior of the solution is deter-
mined from the small-s~ expansion. We omit
the details of the straightforward calculation and
give the results, for s~"'+~~1,

where the coefficients c„and the characteristic
index & are determined from the recursion relat-
tion

X„(&)=K„(& ')[1+O(s )],

ys, (z) =sz " [1 —2yszlnsz+O(sz)]G(v)I„(r ')+sz ' [1 +y2szlnsz +O(sz)]G(-v)I „(r '),

where

(27)

(28)

G(v) = 2 'I'(v)I'(1+ v) (29)

v=(X + —,')"' y=[4v(l —v')] ' (3o)

Using Eqs. (20)-(23) and Eqs. (27)-(30), as well
as a standard theorem in Laplace transform the-
ory, ' we get

p {E/2)~t/tl+ll (t ~ E(E ) (31)

which is to be compared with Eq. (19). Since v

=s for & =0 and E«E„Eq. (21) reduces to the
standard diffusive solution for a distribution
moving with a constant velocity (qED/kBT') ~ For
E&E„Eq. (19) shows an entirely different be-
havior, which does not appear to have a direct
physical interpretation. From Eqs. (3) and (18),
typical values of the critical field are 74 kV cm '
for a solid such as a-Se at room temperature, '
and 22 kV cm ' for a liquid hydrocarbon such as
n-hexane at 300 K.' From numerical work we
find that the exponent s, in Eq. (19) sta.rts to de-
viate appreciably from (E/2)' only for much high-
er values of E. For E=20, we get s,=0.8(E/2)'.
However, the absence of the power law for E
&E, may become evident at lower values of E.

Because of the complicated singularity struc-
ture of the Laplace transform for E&E„we have
not carried out the small-s expansion of the es-
cape probability analytically, and we are unable

to provide a simple expression for the corre-
sponding scavenging-reaction probability' for E
&E,. It may be that the transition from diffusion
to rate-controlled behavior with increasing field
can best be observed by monitoring the recombi-
nation of charged particles in real time, as in a
fluorescence-quenching experiment.

We would like to thank L. Marks for writing the
necessary computer programs and for assistance
with the numerical analysis.
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