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predicts a much larger asymmetry. Our data
are inconsistent with the predictions given in
Ref. 7. The model of Elias, Pa,ti, and Salam'
uses the SU(4)' symmetry. With the parameters
given in their paper, our data restrict the mass
of the neutral boson to be greater than 55 GeV.

Previously a limit on Mz was set by looking at
the energy dependence of the neutrino neutral-
current cross section. Using data from a single
experiment, this gives Mz & 3 GeV. ' Comparison
between the two experiments is made difficult by
problems of relative normalization. The limit
placed in this way is Mz»0 GeV."

En conclusion, we see no asymmetry in the re-
action e'e - p, p other than that caused by sec-
ond-order QED, thus setting a lower limit on the
ratio of mass to coupling constant for a neutral
vector boson.
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The nonlinear realization of supersymmetry of Volkov and Akulov is related to a con-
strained linear realization in two and four dimensions.

One of the earliest realizations of supersym-
metry was the nonlinear model of Volkov and
Akulov", this was soon followed by the linear
scalar multiplet of Wess and Zumino. ' It has
been asserted' that the two models are related in
the same sense that the nonlinear v model is re-
lated to linear realizations of O(n) symmetry. In
this Letter I show that this is indeed the case;
specifically, I show that if one applies the cor-
rect supersymmetric ally invariant constraints to
the linear multiplet, one is left with the Volkov-
Akulov model.

I first consider the two-dimensional case4: The
linear scalar multiplet consists of two scalar
fields A. and I' and a Majorana spinor g with trans-
formations

BA=eg, 5$=(E —i)A)e, BE=—ming.

A supersymmetric action for these fields is

S~ = ,' fd'xE(BA)—'+Ptfq+ I'j.

This can be rewritten in superspace notation by
introducing a superfield 4,

C =A +Kg +PBF

Then

Si = 4 fd xdPdB (4PP4), (4)

where P = B/BP -i pB. The supersymmetry trans-
formations (1) are generated by Q = B/BP+i)B, 54
= E&Q, c'l.

The Volkov-Akulov model in two dimensions
consists of a single Majorana spinor X with trans-

formationn

Q. = & —(&iy
~ X)BpX

and invariant action

S~A = + 2 fd x det(q, ~- kiy, 9pA)

,'f d'x det(—V,„)
= ——,

' fd'x[1 —AitgX ——,'G e~ „(aPysB„X)]. (6)
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(A dimensioned constant' that usually appears in
the Volkov-Akulov transformation and action has
been set equal to 1.)

The relation between the two models is

A'=0, A(=0, A=AE,

(F -Aig)g=g, and E'-A A+g$g=E.
(9b)

which can be written out in terms of A, g, and E:

g = ~(1 —~i@.),

E = —det(V, p).

(7a)

(7b)

(7c)

Clearly, the six constraints (9b) are not inde-
pendent.

Finally, note that these constraints (9) imply
that any action of the form

The three constraints (7) are supersymmetrical-
ly invariant; that is, they are consistent with the
transformations (1) and (5). Upon substituting
the constraints (7) into the linear action (2), one
discovers that S ~S&z.

In superspace the results (7) can be written as

C = ——,
' det(V. „)(~+V)(~+ 9).

These results were obtained in the following man-
ner: The Ansatz was made that g =A. +. . . ; this,
combined with the transformations (1) and (5),
leads immediately to A = -', D +. . . and E = 1 —Fi Px
+. . . ; but this, in turn, implies the complete re-
sult {7). When I considered another Animate, such
as (=iffy+. . . , I immediately found a contradic-
tion, suggesting that (7) may well be unique.

It is simple to invert (7b) and find X = ((1+Pig/);
then (7a) and (7c) express A and E in terms of g,
and one can ask if there are simple supersym-
metrically invariant constraints involving only A,
g, and E, that lead to (7a) and (7c). In super-
space these constraints are

,f—d'xdPdO[ ,'Q-(C—PPC)+V(C)]

reduces to

,' fd—'xdPdO(q, +v, )e =(q, +v,)Sv„

(10)

5A = et/r, 5B = e'iy, (, 5E = —eiP(,

bG = &y,pg, and 5g = [(E+iysG) —ip{A+iy,B))e.

An invariant action is

upon substitution of (8) into (10). (q, and v, are
the coefficients of the linear terms in the Tay-
lor's expansion of Q and V, respectively. )

The two-dimensional case is simple and sugges-
tive but basically uninteresting from a physical
point of view, therefore, I investigated the four-
dimensional case. Although the computations are
much more complicated than in the two-dimen-
sional case, the results are largely analogous.
In four dimensions, ' the scalar multiplet consists
of a Majorana spinor (, two scalars A and E,
and two pseudoscalars B and G. The transforma-
tions are

4'=0 and C= —2CPPC, (9a) S~ = 2 fd4x[(OA) + (BB)'+QiPg+E +G ].
It is useful to define complex fields

(12)

1+y, 1 -y, A —i B &'+iG
R 2, L — 2, 8—

5Q = eRg, 5F = —eiPRg, 5R( = 2R (F -iPQ)e,

S~ = ,' fd'x(4—f(&Q)(OQ*) +&&*]+pipRg+ g&PL()

In terms of these we can define chiral superfields'

e, =Q+9Rq+PROr+iPy~ROO„Q --,'(VO)(PigRq)--, '(VO)' Q,

C =Q*+VLg+PLOF*+i'" LOBqQ* —2(PO)(VipLg) 8(VO)~ Q—*.

(13a)

(13b)

(13c)

Then supersymmetry transformations are generated as in two dimensions, and the action can be writ-
ten as

Si = , fd'x[fdtIR—dOC,PP4 + fdPLdOC PPC, ]. (13e)

To facilitate calculation, I used a slight generalization of the Volkov-Akulov model with transformation

5Z = & —iey" {1+niy,)z&„x

and invariant action

Svz ——+ ,' fd x det[q—,&-Xiy, (1+oiy, )&&X]=—+ 2 fd x det(V, „).
4S2

(14)
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This is a parity-nonconserving realization of the conventional super-Poincare algebra. (Note that
[F,Q, e,Q] = 2ie,y"e,&„as always. )

The relation between the two models is

8 =-') R)([1-i(1+i~))p) ]-!(D)'(1 +i~)'(5. ) R&'sbr)

6' = -.' - i XAR)( —(1+ia)(){.L)).)(5,XRo"Sb)).)

+ (1-ia)[())y,L)()(~'))PR)))+ (@,R~b)))()(y'La'))) ——,'() L)() ())RX)]

+ (1.+ n') ()(L)t) i[()g x) (&,))Ro"&b))) 2—(Ãy.»br) (8'Of o"&,x)],
)(y=aa(a(1 —a(1+(a)a)(la —({+an)*(ata)(a.ama"a, a))+ ({—aaa)a'a{Oaa. a)

+-,'(1+n')/()(. L)()[-.' Cl X()iR){)—a X(&.XRy'P)(. ) —2o"X(B.Ro,,s') )]
—()).R)) )[y')). (&, )(.PRX) +y'&bi(&y R5.){.)1]

-!(({+(a)({+a')(aa)'I){a(aGta".a, a) - aa t)a(a 'a))a".aa))) ., ({a

Although it is not obvious in this form, 6: is proportional to det(V, „)plus extra total derivative terms.
When the result (16) is substituted into the linear action (13c), as in the two-dimensional case, S~
cc Sv„. Again, the result (16) can be derived from simple supersymmetrically invariant constraints

C, '=C '=0 andC, = —4,PI'4, .
Some components of these are

8'=0, 8Rg = 0, 86' = —')I)R$, 8 = 286'*, R)c) = 2R(6'* —i8P){I), 5 =2%*% +i)t'))Lg —28 8*.
Although the four-dimensional calculations are far more tedious than the two-dimensional calcula-

tions, the method is essentially the same: The Ansatz, {I)=x+. . . , and the requirement of supersym-
metry, imposed order by order in )(. , lead unambiguously to the result (16).

These results make explicit the, connection between linear and nonlinear realizations of supersym-
metry. It should now be possible to investigate aspects of supersymmetry breakdown in greater de-
tail; furthermore, since the coupling of the linear multiplet to supergravity is known, it should be
possible to use these results to couple the Volkov-Akulov model to supergravity and to study the super-
Higgs phenomenon.
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