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New Exact Solutions of the Classical Sine-Gordon Equation in 2+1 and 3+1 Dimensions
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The method of Backlund transformations is employed to derive in 2+ 1 and 3+ 1 dimen-
sions exact solutions of the sine-Gordon equation [V2 —c 2(B2/Bt2)) g = sing. A formula is
developed in 3+ 1 dimensions which permits us to generate without additional quadratures
an infinite class of new time-dependent solutions.

The solution of nonlinear second-order partial differential equations in four dimensions continues to
be one of the most tenacious problems in mathematical physics. The recent emphasis among physicists
on nonlinear dispersive phenomena' —especially in connection with soliton theory'~nd development of
nonperturbative methods in two dimensions have made it even more desirable to find four-dimensional
solutions of such prominent equations as the nonlinear Schrodinger equation" and the ubiquitous sine-
Gordon equation. ' '

The purpose of this Letter is to report explicit solutions of the classical sine-Gordon equation (SGE)
in 2+1 and 3+1 dimensions, respectively:

(B„'+B,'-B,')X =sing, c=l,
(/ Bts)X -sing 'qs —B 2+B syB c- i

(la)

(lb)

where g is a scalar field, x,y, z are space variables, t denotes time, and B,=B/Bt, B„=B/Bx, etc. The
Backlund transformations' associated with (la) and (lb) read, respectively,

(IB„+iop, +a2B,)(n -ip)/2 = sin[(n+ip)/2]exp[i8o, e x(&p&,)],
(IB„+iop, +iosB, +asB,)(ct -ip)/2 = sin[(o. +ip)/2]exp[i8o', exp[(-iso', ) exp(- «,)]],

(2a)

(2b)

where o] 02 +3 are the usual Pauli matrices and I is the 2 2 identity matrix. The parameters ~,~, y, 7,
with 0 ~0~ 2m, 0 ~(p~2m, —«X &+&, —««+'o, are called Backlund transformation parameters,
while the real functions o., P satisfy

or

n(x, y, t) sino. (x, y, t)
B s+B&2 B&2)

P (x,y, t) sinhP(x, y, t) '

a(x, y, z, t) sino. (x,y, z, t)
P(x, y, z, t) sinhP(x, y, ~, t)

'

(3a)
(3b)

(4a)
(4b)
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Equations (2a) and (2b) imply a, transformation from the "old*' solution n to the ' new" solution ip:

ip =B(8,X)n,

iP =B(9,q, ~) n, (5b)

with B known as the Backlund transformation operator. Equations (5) may be represented symbolically
by a Bianchi diagram (see Fig. 1).

The next task is to derive exact solutions for both n and p: I illustrate' the procedure for the (2+ 1)-
dimensional SGE (la). In order to solve (2a), I first replace it by the real equations

I9„(n/2) +I (p/2) =Icos9 sin(n/2) cosh(p/2) -M sin9 cos(n/2) sinh(p/2),

P(n/2) -Is„(P/2) =Icos8 cos(n/2) sinh(P/2) +i' sin9 sin(n/2) cosh(P/2),

(6a)

(6b)

where P=op, iv-29, andiVI=&, exp(&o,). To get n solutions, we set p= pa=0 ('vacuum" solution) in (6)
and obtain

n( x, y, t; 8, X) =4tan '[aoexpT(x, y, t; 8,X)],

7'=xcos9+ sin9(y cosl&+t sinl&), a, constant,

(7a)

(7b)

where n, satisfies Eq. (3a). The solitonlike na-
ture of this solution can best be inferred from the
asymptotic behavior of &, in cylindrical coordi-
nates x =p cos&, y =p sinT, and ~ = t, with 0 - 7

27, 0- p (+&, - ~ & t &+ ~. For —«y &+ ~
and fixed t=t„ ltol&+~, for example, the result
is (with a, —= 1)

2w, if I (7';8, A)& —1, .

limn, (p, T, t~;8, X)= ' .
(

' '
)

where E= tanT tanocosl&. A similar conclusion
holds if we fix p =(x'+y')~' at p =p, &+~ and al-
low ~-+ '0.

Moreover, the choice & =0 in Eq. (7) yields

n, (p, &;9) =4tan ga, exp[pcos(v -9)]), a, & 0,

which is precisely the solitonlike solution in 2+0

dimensions. ' Its asymptotic behavior reads

limn, (p, ~;9) =2m, if --,m&~-8 &-,w,
p~+ oo

lim n, (p, v;8) =0, if 2m &T -9 &2m.
p~+ oo

Similarly we may derive solutions for P by let-
ting n= no=0 ("vacuum" solution) in (6):

4 tanh '(a, exp T), if 7' & 0,
4coth '(a, exp''), if »0,

(8a)
(Sb)

7" being the same as in (7b); a„a, are integration
constants and P, satisfies (3b). Before examining
the (3+1)-dimensional case, we observe (i) that
n» p, depend only on the single variable 7' (this
is an exception, however, and does not apply to
the general multiple solutions, as discussed in
the conclusion) and (ii) that the derivation of
these solutions is consistent with the integrabil-
ity conditions.

In 3+1 dimensions, the simplest nontrivial +
and P solutions read

n, (x, y, z, t;9, y, T) =4tan '(coexpR),

4 tanh '(c, expR), if 8 & 0,
4coth '(c, expR), if R&0,

R =x cos8+y sin9 cosy+ sin9 sing[a cosh~+ t sinh~];

c„c„c~are integration constants, (V' —9,') n,
= sinn„while (&2 —9&')p, = sinhp, .

One of the advantages of possessing a Backlund
transformation is that it virtually guarantees the
existence of a generating formula which enables
us to derive without additional quadratures other
solutions of the same equation. The following

(10a)
(10b)

a
FIG. 1. Bianchi diagram for the BackIund transforma-

tion [Eq. {2)] which is characterized by the real param-
eters {I9,y, 7).
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theorem tells us how to generate in 3+ 1 dimensions infinitely Inany real solutions &. I utilize Fig. 2
and abbreviate p,(x,y, z, i;8;,y, , &,)—= p, ', j =1,2, where 0&8;-2m, 0&y, &2m, and —~&v,. &+~.

Theorem: Let ao be a solution of Eq. (4b) which are connected by the Backlund transformation iP,~'~

=B(8,, y~, &~) o, A new solution o.,(x,y, z, i;8„8„y»y» &„&,) is then given by

tan[(~, —a,)/4] =D tanh[(P P' —P P')/4],

D(8 „82,y„y» v„v'«) =+ [(1+L)/(1-L)]~2, 1-I.& 0,

L = cos8, cos8, + sin8, sin82[cosy, cosy, + siny, siny, cosh(&, —&,)].
Proof: From Fig. 2 I deduce the four transformations

iP,~ ~ =B(8,, y;, r, )n„j= 1,2,

&«=B(8««, ym «, T2 «)ip, +", 0=0, 1,

which are equivalent to the first-order equations

K(o.,—iP,~'~)/2 = sin[(n, +iP,~'~)/2] exp(i8„S,), j =1,2,

K(iP,~""~ —e,)/2 = sin[(n, +iP,~""~)/2] exp(i8, «S, „), 0 = 0, 1,

(12a)

(12b)

(12c)

(12b)

(14a)

(14b)

where R = I~„+io'p—,+ivy, +o«8, is the differential operator appearing in Eq. (2b), and S =o, exp[(-iy v,)
&&exp(-& o,)j, m=1, 2. Elimination of the operator R from (14) yields, after further manipulations,

[exp(i8,S,) —exp(i8 p,)] tan[(n, —o.'0)/4] =i[exp(i8,S,) + exp(i8 eS«) j tanh[(p, ~ '~ —p,~'~)/4], (15)

provided cos[(n, +ao+ipp +ip, ')/4]&0. Multiplying Eq. (15) from the left by its complex conjugate,
we can solve the resulting diagonal matrix equation consistently for tan[(o.', —&,)/4] to obtain the gen-
erating formula (12). Note that the "given" solution n, need not be the vacuum solution o.', = 0.

In deriving the above generating formula I assumed the validity of the theorem of permutability which

implies, in turn, the existence of the diagram in Fig. 2. Although this theorem has, as yet, not been
proven rigorously for 2+ 1 dimensions, it would appear that the commutative property n, =Bp,o.,

BF2n, of two sue cessive Backlund transformations survive s, in a certain sense, al so in 3 + 1 dimen-
sions [here B&=B(8;,y, , &,)—]. My optimism is based on the fact that o.'« is indeed a solution of (4a), as
may be verified by substituting (12a) into (&' —8, ')nm= sino, . Since the resulting computation is too
lengthy for inclusion here (it takes about 15 pages), I shall merely hint at the general procedure. It is
convenient to set a0=0, express (12a) as tan(o'. ,/4) =D(h, -h«)/(1 —h,k,), with k, =-tanh(p, ~'~/4), j =1,2,
and then calculate 8„'e„e,'&„etc. Combining these second derivatives amI simplifying the various
expressions, we obtain eventually

P' &,') ~,-=M/N,

with

M =4D(h, —h, )(1 —h,h, )[(1 —h,h, )' —D'(h, —h, )'], Qp
1&C 1&~1

N = [(1—h,h, )«+D'(h, —h,)']'.

In order to compare M/N with sino.'„we must
rewrite sine, as 4[1 —tan (a«/4)j[1 ta+n'(a /«
4)] 'tan(n, /4) and in it replace every tan(o.',/4)
by D(&, —h, )/(1-kP, ). This exercise yields pre-
cisely M/N and verifies that (&' —8 P)o.', = sinn, .

In conclusion, I should like to make these re-
marks. (i) The generating formula for n solu-
tions in 2+1 dimensions reads the same as (12a),
but with L in (12c) replaced by l = cos8, cos8,
+sin8, sin8, cosh(X, -&,). (ii) The a, solutions

2 42,'4 2 272

FIG. 2. Bianchi diagram used in the proof of the
generating formula (12).
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(7) and (9) could also have been obta. ined without
the Backlund transformations (2) by subjecting
the 0ne-soliton solution in 1+ 1 dimensions to a
Lorentz transformation. The same is true for
the e, solutions. While neither &, nor &, is truly
a three-dimensional solution of Etl. (3a), as men-
tioned in connection with Eqs. (7) and (8), it can
be shown that there exist an infinite number of
multiple solutions +,„, n =2, 3, 4, ..., which, for
typical values of the Ba,cklund parameters (&,&),
are genuinely three dimensional. These, then
are nero solutions, since they cannot be derived
by a simple rotation from the corresponding mul-
tiple solutions in 1+1 dimensions. (iii) The
technique described above enables us to write
down new exact solutions of Josephson's equation'

t9.'+ 9,' —&, '(6'/st')~4(&, y, t)

=&y 'sing(x, y, t)

which describes the propagation of magnetic flux
through a Josephson tunneling junction.
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Photon and Pion Emission from the Nucleon-Antinucleon System
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Quantitative estimates of the single-y and -7t emission rates for transitions between
bound states of the nucleon-antinucleon system are presented. Quantum-number assign-
ments in the context of potential and baryonium models are suggested for new mesons
recently seen in monoenergetic y emission from the pp atom. It is shown that m transi-
tions are important in distinguishing between alternative models.

There has been considerable interest recently for new mesons near the NK threshold. Some of
in the spectroscopy of mesons whose masses lie these approaches involve the use of NN potential
in the vicinity of the antinucleon-nucleon (NN) models, while others are based on topological
threshold. Such structures have been seen, for expansions' or the Massachusetts Institute of
example, in ~VX total and elastic cross sections, ' Technology bag model extended to the diquark-
pd spectator experiments, ' and mp production ex- antidiquark (Q'q') sector. '
periments, ' and through the observation of y rays In the present Letter, we adopt the potential
from the jap system. ' approach. We use a model for the intermediate

There exist numerous theoretical predictions and long-range parts of the strong NN potential,

1978 The American Physica1 Society


