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If a pulse of light is transmitted through a slab of material whose polariton dispersion
curve has a minimum value for the group velocity (~(q) has an inflection point], then
the intensity of emergent light will oscillate before decaying, in accordance with the
properties of the Airy function. The effect is linear in the applied field of the incident
light. Application is made to the A (n = 1) exciton-polariton of Cds, with no adjustable
parameters.

Recent interest has emerged in systems exhibit-
ing spatial dispersion —the dielectric function de-
pends on wave vector (q) as well as frequency (z)—in an exciton-polariton mode. Indeed, the dis-
persion curves &u(q) have been measured for both
polariton branches in GaAs and in CdS by reso-
nant Brillouin scattering, ' confirming ideas based
on simple models such as Eqs. (5) and (6) below.
To date there has been very little interest in the
time-dependent spectroscopy (TDS) of such sys-
tems, although TDS has been used to investigate
a fascinating variety of phenomena such as self-
induced transparency, optical nutation, etc.' In
this Letter, it is demonstrated that when a pulse
of light is transmitted through a slab of material
whose polariton dispersion curve has a minimum
value of the group velocity, the intensity of the
trailing edge oscillates before damping out; the
envelope function (the amplitude) is describable
by an Airy function and, unlike self-induced trans-
parency, this is a linear effect.

Frankel and Birman' (FB) previously showed
that the leading edge of the pulse shou1. d exhibit
similar behavior due to the classical Sommerfeld
and Brillouin precursors plus a new exciton pre-
cursor (EP). However, these precursors are

q((u) =q*+(v,*) '((u -(u*) —g(v, *) '(~ —~*)',

extremely weak as will be discussed below. The
Sommerfeld and Brillouin precursors have not
been detected in real optical systems although
they were predicted over 60 years ago; the ex-
citon precursor is apparently intermediate in
strength between the two. '

Consider any linear one-dimensional wave phe-
nomenon exhibiting dispersion

A(x, t ) = f a((u) exp(i[q((u)x -(ut])d(u.

In the pl esence of damping, q(co) may be complex.
If A(x, t) in a finite pulse of a single plane wave

[a(~) is peaked at some m, ] and there is no damp-
ing, then simple considerations' indicate that thy
single plane wave is modulated by an envelope
function which propagates with the pertinent group
velocity v = dv/dq and which broadens as it prop-
agates if dv, /dqe 0. The more rigorous deriva-
tion" shows that if x, t are large and x/t =v (a
constant), one "sees" only that wave whose group
velocity is v. If the dispersion relation is such
that v, (q) takes on a minimum value v,* [i.e. ,
dv (q")/dq =d +(q*)/dq'=0], then there is a rela-
tively sharp boundary between an unperturbed re-
gion x &v,*t and a perturbed one x & v,*t, at least
asymptotically. " To handle the transition re-
gion, one keeps the cubic term in the expansion'.

(2)

(3)

where $ = z[d'&u/dq'], .&0. Etluation (I) now becomes

A(, t)= ~[i(q — *t)]f.(.). p{ [( — *)( /, *-t)-&(,*) '( — ")' ]]d .

Etluation (3) is an example of s, situation where the standard asymptotic results' based on the method
of steepest descent and/or stationary phase do not apply, basically because there is no (v —co*)' term
in Etl. (2), and because we are interested only in the region ~x -v, *t~ «x. Considered as a function of
co, the exponential is highly oscillatory for &co* and becomes more so as the wave progresses, be-
cause of the cubic. Hence a(+), a relatively smoothly varying function (at least compared to exp[-i(
x (v,*) (to -&u*)'x]], does not contribute for &uvv*, in the asymptotic limit x- ~. It may therefore be
assumed constant and be taken outside the integral; the remainder is an Airy function":

A(x, t)=2ma(&a*)U, * exp[i(q*x —u*t)](v */3)x)"'Ai[(v, *t —x)(v,*/3(x)"'].
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More rigorous derivations are given in Ref. 7
and especially Ref, 8. Roughly speaking, for v,
~ v,* there are two waves of differing wavelengths
which alternately interfere constructively and de-
structively.

The derivation of Eq. (4) is still correct in the
presence of damping; all parameters are com-
plex and there are no poles or branch cuts be-
tween ~* and the real axis, ' Use of the complex
v, * has obviated the necessity of introducing the
signal velocity or the energy velocity. 4

The clearest example of the applicability of
these concepts is waves on the surface of a liq-
uid, ' in which restoring forces due to gravity and
to surface tension combine to give a minimum v .
For water waves (p =1 g/cm', T =72 dyn/cm),
this minimum group velocity is v,* = 18 cm/sec
with a corresponding wavelength 2z/q* =4.3 cm.
The asymptotic approximation is valid for dis-
tances greater than (3$/v, *)"'which is 0.4 cm
for water waves, much less than one wavelength.
The thickness of the transition region is [x/(0. 4
cm)]' '(0.4 cm) which is only 4.0 cm, less than
a wavelength, after the disturbance has propagat-
ed a distance of 4 m—a very sharp transition in-
deed. Hence if a stone is dropped in a deep pool
of still water, 'the most conspicuous feature is
the ring of waves with the length corresponding
to the minimum group velocity surrounding a cir-
cle of smooth water. "' This theoretical treat-
ment has actually been experimentally verified
in detail for a maximum group velocity which oc-
curs in water of a finite depth. "

In solids of high symmetry the dispersion rela-
tions for transverse polariton modes are given
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FIG. 1. Dispersion relations for the two transverse
branches of the A (n = 1) exciton-polariton in Cds as
determined from Eqs. (5) and (6). The input data were
taken from Ref. 13 except that y= 0 was used. The
group velocity of the lower branch is a minimum at
the inflection point, v . There is also a longitudinal
branch which is not shown.

q

~ &, (q, ~)=c q, (5)

4g(x (d &s, (q, (o) =e„+
(uz +(k&dz/M)q

(6)

Equations (5) and (6) together yield an upper (U)
and a lower (L) polariton branch which are plot-
ted in Fig. 1 for the A(n= 1) exciton of CdS." Be-

where ~, is the transverse dielectric function.
Near a sharp exciton line it is given approximate-
ly by"

TABLE I. Numerically determined values of quantities associated with the inflection point of Fig. 1, except that
y= 10 eV (Ref. 13) has been used. '~ If y= 0, the imaginary parts vanish, the real are unchanged (vice versa for
qU*). A slab thickness a = 10 cm was assumed for the last two entries. Values for M = 0.4me are provided for
comparison only.

M = 0.4m~

CO+

q
gr

g
d v E/'dqL

d v~/dq = 6$
[( g )3/3 t.j 1 / 2

7', = a/vg+
(~ 2/7 )i/3

[( g) 4y3g ji// 3

(2.5533, —5.x 10 ) eV
(1.26x 106, —14.) cm ~

(8., 5.5x 10&) cm
(2.1x 10, —22.) cm/sec

0
(4.6x 10 6, 1.4x 10 0) cm3/sec

(2.0 x 10, —1.6x 10 ) sec '
(48., 5. x 10 4) psec

{4.4x 10", —1.8x 106) sec '

(2.5536, 5. x 10 ) eV
(1.06x 10, —12.) cm
(6„3.8x 105) cm-&

(3.9x 10, —43.) cm/sec
0

(1.3x 10 ', —5.x 10 '
) cm /sec

(3.1 x 10, 6. x 10 ) sec
(25., 3.x 10 4) psec

{7.1x 10", 1.6x 10 ) sec
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low co~ the wave vector of the upper polariton
branch, q~(cu), is pure imaginary (and large near
cur). The group velocity of the lower branch has
a minimum at +*,' some pertinent quantities, de-
rived numerically, are listed in Table I, where
the effect of damping [y = 10 eV (Ref. 13)] has
been included.

It is also clear that the group velocity takes on
relative maxima at the extremal limits of the
branches of Fig. 1. The Sommerfeld precursor~
i,s governed by the high-frequency limit of q„(&u)

e„'~'cu/c, the Brillouin precursor' by the low-
frequency limit of q~(~) —(e +4ma, )"'~/c, and
the new exciton precursor' by the high-frequency
limit of q~((u) [- (M/5(ur)"'(u if Eq. (6) is taken
seriously in this limit].

If the carrier frequency of the pulse is "near"
z~ and if the duration of the pulse is larger than
1/pic-10 " sec, the fourier spectrum a(&u) in
Eq. (1) falls off rapidly in either the high-frequen-
cy or low-frequency limit. Hence all three pre-
cursors discussed by Frankel and Birman' have
small amplitudes as can be seen from their Table
I. (They also neglected damping and used a large
propagation distance in a semi-infinite sample. )
By contrast, if the carrier frequency is tuned
to co* so that a(&u) is largest at &u*, the amplitude
of the emergent pulse is largest for x~v, *t for
which Eq. (4) applies If ~(~

' ' detuned from +*,
most of the wave pro agates faster than v ~ and

Z, (z, t) = f D((u)~((u) exp[i((uz/c -(ut)]d(u, (8)

where D(+) is given explicitly by formulas (25),
(60), and (61) of R«. 14. If the thickness of the
slab is a & 200 A, then exp[iqv (co)a] «1 for &u ~ &e*

and, in this case, D(v) reduces to

p(~) exp f i [q~ —(u)/c)] aj
1 —s((u) exp(2iq~a)

where p and s do not depend on a. The trans-
mitted field, evaluated as z -a+ is [from (8)
and (9)]

Eq. (4), while true, has a small amplitude com-
pared to the main pulse.

To be more concrete, let us consider the specif-
ic model of the nonlocal electromagnetic proper-
ties of a slab introduced by Pekar. " Light is
normally incident on a slab occupying the region
0&@&a." In this model, each frequency compo-
nent of the incident field

F.,(z, t) = f ~ (z) exp[i(cuz /c —u!t)]du),

couples to a reflected field, a transmitted field,
and a right-going and a left-going wave for each
of the two polariton modes of that frequency. The
approximate susceptibility function is specified

uniquely by stipulating the additional boundary
conditions (ABC), P„(exciton)=0 on the two sur-
faces z =0, a; this is equivalent to the value U
= -1 in the susceptibility function of Johnson and
Bimbey. " The transmitted field (for a &z) is

&r(a, t) = Q J e((u)p(u))s" (~)exp{i [q~((u)(2n+1)a —~t]] d(u.
n=O

(10)

The index n in (10) is the number of round trips the wave makes before emerging from the slab. It is
clear that each term has the general property of Eq. (4) for t = (2n+ 1)a/v *

[ a(u&) = R(&u)p(u)s" (u)]. In
particular, the intensity of light due to the first term can be written, for t = T, = a/v *, as

I(t) ~e- 'a '~'~Ai[n(t —T,)] ~',

where o. =[(v *)4/3)a]' ' and To are given in Table I for a slab of thickness a= 1pm, which was chosen
because it is a convenient thickness for such transmission experiments"; the upper branch has com-
pletely damped out and the lower is essentially undamped. The thickness must also be large enough
for the asymptotic approximation to be valid i.e. , a»(3$/v, *)' ' which is indeed the case. The time
scale of Eq. (11) is I/n (=2.3 psec) which is only weakly thickness dependent (-a'~'). Such picosecond
resolution has already been achieved in a number of systems. "

The prefactor in (11) does not depend on a or t; it does depend on the detailed nature of the surface
(e.g. , on the ABC) but it is clear that (11) will hold, regardless of ABC, as long as exp(iqyz) «I and
the asymptotic expansion is valid. That is, each Fourier component of the incident field couples to
both polariton branches in amounts depending on ABC; the upper branch quickly damps out, whereas
the lower acquires a phase exp[i q~(u&)a] when it reaches the second surface. Therefore, the intensity
of light passing through the slab will pulsate (in time) before decaying exponentially, in accordance
with the properties of the Airy function.

The imaginary parts of a, T, are first order in the damping parameter y [Eq. (6).depends on iy] and
are extremely small. We may therefore expand Eq. (11) in a Taylor's series about y=0. Using the
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notation n= n'+in", . etc. , and keeping only the lowest-order terms in y, one finds

! Ai[n(t —T,) )!'= {Ai[n'(t —T, ')])'+ (o."(t—To )—
Since the maxima of [dAi(s)/dz]' coincide with the
zeroes of Ai'(z) (and vice verse), we see that
damping tends to blur structure in the intensity,
in addition to the exponential thickness depen-
dence. For the parameters of Ref. 13, as evinced
by Table I, (n "(t —T, ") —e' T,"] is less than 6
&& 10 ' for all values of t such that ! n'(t —T,')!
&10. This includes the last seven zeros of the
Airy function. Therefore, even in the presence
of damping, the ratios of relative maxima to
minima in the intensity of the trailing edge seem
to be quite large. Kiselev et al. have concluded
that y =10 ' eV in some of their samples. "

By performing this experiment, one ought to be
able to determine &u*, v *, and d'v /dq' (but not
q*) purely by optical means and, more important-
ly, the interpretation is independent of assumed
ABC's (a drawback present in more conventional
techniques). "
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