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modes of the collisionless universal instability
are stable and that the long-time behavior of an
initial disturbance is dominated by the convective*
modes.
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The rotation of physisorbed monolayers with respect to the substrate was first pre-
dicted by Novaco and McTague in the harmonic approximation. An anharmonic theory
of this effect is given here. The rotation takes place at the commensurate-incommen-
surate transition, provided the longitudinal sound velocity of the free adsorbate is more

than twice as large as the transverse sound velocity.

Physisorbed monolayers often show phases
which are incommensurate with the substrate.! "3
Similar discommensuration effects have been ob-
served in charge-density waves,*'° liquid crystals
under certain conditions,®” ferroelectrics like
NaNO,, and many magnetic materials. However,
adsorbed layers have particular properties due
to the simultaneous existence of transverse and
longitudinal modes. For instance, in certain
cases, the adsorbate is tilted with respect to the
substrate. This effect was. first predicted by
Novaco and McTague, using the harmonic approx-
imation.®

This paper gives an anharmonic treatment of
the effect, One advantage of the approach is that
the anharmonic theory can be applied near the
commensurate-incommensurate (C-I) transition,
when the harmonic approximation cannot be used.
Furthermore, our treatment is simpler and yields
the energy as an extremely simple function of the
tilt angle, whereas Novaco and McTague obtained
the energy as an infinite sum from which the dom-
inant term is difficult to extract.

As suggested by Venables,? the adsorbed layer
is treated as a succession of domains separated
by walls. [The terminology “dislocation”? or

“soliton” is sometimes used. We prefer the word
“wall” for a (D - 1)-dimensional steady defect,
“dislocation” for a (D — 2)-dimensional defect, and
“soliton” for a propagating defect.] Inside each
domain the system is assumed to be harmonic and
nearly in registry with the substrate. Thus all
anharmonic features are contained in the walls.
This approach is especially appropriate near the
C-I transition, when the distance I between walls
is large with respect to the wall thickness 1/k.
Pseudohavmonic theory: Basic equations.—Let
the adatoms be labeled by a D-dimensional vector
index 7=(x,, %, . . . , ¥) and let R(T) =(X,, X,, . . .,
X ;) denote their position. For physical applica-
tions D =2. More precisely, T can be chosen as
the position that the adatom would occupy at zero
temperature in the absence of interaction with the
substrate, i.e., in the “free” adsorbate. Then the
components of the strain tensor are® '

Ua‘y(—f)=%aa[Xy(;)—xy]+ %ay[Xo[f)—xa], (1)

where ¢, y=1,2,...,D and 8 ,=9/8x,. The ad-
sorbate is treated as an elastic continuum.

The registered state corresponds to R(t)= Cr
+B, where C and B are constants. The appropri-
ate generalization for the incommensurate phase
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is (Fig. 1)

R(®=cr+u(@), (2)

where 'ﬁ('f') is almost constant far from the walls.
For the sake of simplicity the walls will be as-
sumed to be parallel planes, or straight lines for
D=2. The x, direction can be chosen orthogonal
to the walls. At equilibrium in the continuum ap-
proximation the walls must clearly have a uni-

form distance I. It is sufficient to calculate the
elastic energy between two successive walls at

x,==1/2 and x, =+ 1/2. U(T)=1(x,) depends only
on x, and the boundary conditions are

W+3l)=+3b. (3)

The vector b is a characteristic of the host lattice
(Fig. 1). Its modulus is fixed, but its angle ¢
with x, depends on the orientation of the wall with
respect to the substrate.

The free energy is written as

F=JaPr[INToUsol + b DafUsy?1+ JaPr[Al4(T) |2+ E, ). (4)

The first term is the free energy of the free adsorbate, and X and u are Lamé coefficients.®> The sec-
ond term is the interaction between the substrate and the adsorbate in an approximation similar to

the approximation of Luban, Mukamel, and Shtrikman’ for liquid crystals. We call it the “pseudohar-
monic approximation.” The system is harmonic everywhere except along the central axis of the walls.
A is a constant and E, depends on pressure. The distortion of the substrate is neglected. The integral

in (4) is over the adsorbed mass 7, not over the substrate area R.
After insertion of (1) and (2) into (4), minimization of F with boundary conditions (3) yields

u,(x,)=b, exp(— «l/2)sinhkx, /[1 ~ exp(- x1)],

U (x,) =B rexp(— k,1/2)sinhk x, /[1 - exp(— k.0)],

where b,=(0, b,, .. .

K=2A/(x+2u),

,b,)and U,=(0, u,, .

KZ=2A/.

(5a)
(5b)

.., up) are the components of b and U parallel to the wall, and

(6)

Pseudoharmonic theory: Ovientation of the walls.—The next step is the minimization of the free en-
ergy with respect to cos@=5,/b and I, for a given value of the substrate area

v=[dPR= [ CP(C+ 8,u,)dPr=CPV[1+(b/1)cos¢]

(M

where V is proportional to the adsorbed mass. [Equation (7) holds if the walls correspond to an in-
crease of the interatomic distance. In the opposite case b should be replaced by - bl.

V=f"'fdx1"'dxp.

Insertion of (1), (2), (5), and (7) into (4) yields, for large I,

2
cP ;cmonstﬁi [_1_ (l_l‘.)c032¢+lxe'“'cos2qo—gcoscp] s (8)

+
2l Lkyp \K Kg

where g is a pressure-dependent parameter,
g2=(AbC) 2B, - (C* - 1)(\D+2p)].

The shear modulus u and the compression mod-
ulus [A+(2u/D)] of the free adsorbate must be
positive.® This implies K<k, For this reason
a term containing exp(- k) has been neglected
in (8).

When g is smaller than a critical value g, the
free energy has a minimum for I=, indicating
the stability of the registered state. A continuous
transition occurs at g, and the behavior of 7 and
¢ just above g, is readily obtained if one equates
the derivatives of (8) with respect to I and ¢ to

FIG. 1. Spatial variation of the longitudinal component
(full curve) and of the transverse component (dashed
curve) of the displacement « from the registered posi-
tion.
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be zero. There are two cases:
(1) If k,<2k,

g.=1/k, ¢=0.

The walls are orthogonal to the crystallographic
direction b of the substrate. The variation of !
is given, in qualitative agreement with previous
results,* %710 by

le™i=g-g,. 9)
(ii) If

Kp>2K (10a)
or

A>2p, (10b)

Eq. (9) is again correct, with
g,=(2/kp)[(Kkp/K) = 1]

but the walls take an asymmetric position given
by

cos@ =g /2(k™ - kpt). (11)

Condition (10) means that the velocity of longitudi-
nal sound in the free adsorbate (4 =0) would be
more than twice as large as the velocity of the
transverse sound.

Situation (ii) corresponds to rotation of the ad-
sorbate with respect to the substrate (Novaco-
McTague effect) as will now be argued. For sim-
plicity, we consider the case k, /<1. Equations
(5) can then be approximated by

R(T)=Cr+bx, /L, (12)

and this relation holds for the whole crystal
[whereas Egs. (5) are restricted to |x, [<7/2].

A line defined by b+T =const corresponds to a
crystallographic direction of the adsorbate, as
can be seen from the consideration of the regis-
tered state (I=«). Application of transformation
(12) tilts this direction by an angle roughly pro-
portional both to ¢ and to 1/ (Fig. 2).

Discussion.—The present theory contains a num-

ber of approximations and assumptions.

(i) The pseudoharmonic approximation [second
term of Eq. (4)] assumes the system to be har-
monic everywhere except along infinitely narrow
walls. In practice, the interaction V('ﬁ(i")) with
the substrate is a periodic function of U and the
system can only be considered as harmonic at a
sufficiently large distance > A/2 from the wall
axis, when d?V/du?>0. The present theory is ex-
pected to be correct if both kI and kA are much
smaller than 1. This implies an appropriate
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FIG. 2. A skew wall in the triangular lattice, showing
the resulting rotation of the adsorbate (dotted lines)
with respect to those of the substrate (full lines). The
black circles are adatoms. The small open cirlces
and the intersections of full lines are registered adsorp-
tion sites. The dashed line is the central axis of the
wall.

form of V(x). The usual choice for D=1 is V(«)
=—A’cos(2mu/b) and gives rise to the usual sine-
Gordon equation. Extension to two-dimensional
media of this sine-Gordon formalism would prob-
ably lead to serious mathematical difficulties and
no prediction will be made about the expected re-
sults.

(ii) The continuum approximation is satisfactory
if 1/k, is large with respect to the interatomic
distance, as is probably the case for rare-gas
monolayers on graphite, Increasing A would
probably stabilize the symmetric structure ¢ =0.

(iii) We discarded the possibility of wall cross-
ing. Wall intersections would introduce terms
proportional to 1/72 into expression (8). If the
C-I transition is continuous, these terms are
small near the transition, and the results of the
section on orientation of the walls are not signifi-
cantly altered. In addition, the C-I transition can
only be continuous if the wall-crossing energy is
positive,’* and in this case wall crossing is for-
bidden near the transition (for an ideal surface,
at 7=0 and in the classical approximation) so
that the pseudoharmonic theory is applicable.
Preliminary investigation of a special case (a
square lattice) suggests that in this case, wall
intersections stabilize the symmetric structure
@=0.
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Condition (10) is quite stringent. For a triangu-
lar lattice with central forces between nearest
neighbors (a plausible model for rare-gas mono-
layers on graphite), one has

kp=KV3, (13)

and condition (10) is pot satisfied, though the dif-
ference lies within “theoretical” error. Experi-
mentally, however, the Novaco-McTague effect
has been observed for argon on graphite,'?

A last comment will be made. In charge-densi-
ty—wave systems, similar distortions have been
observed and received a theoretical, though pure-
ly numerical, explanation, which does not use
coupling with phonons,® and is therefore complete-
ly different from ours. It would be interesting to
compare the two mechanisms.

The author is indebted to C. Marti for many ex-
citing discussions and information.
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We calculate the surface density of acoustic phonons for GaAs(110) and relate it to the
Brillouin elasto-optic cross section. A continuum of surfacelike excitations is found in
good agreement with the position and the shape of the surface structure observed in the
measured Brillouin spectrum. The role played by the optical absorption coefficient in
determining different scattering mechanisms is also discussed.

Brillouin scattering is up to now the only ex-
perimental technique which has been success-
fully employed to detect thermally excited acous-
tic phonons in metals and semiconductors.™? In
the past it has been used in semiconductors in
normal incidence.! In this case a proper theory
has been developed to understand the position
and the line shape of the peaks appearing in the
experimental spectra and representing bulk
phonons. '3

Only recently Sandercock® has shown that
Brillouin backscattering spectroscopy can be
used as a useful technique of high resolution to
detect thermal-equilibrium surface acoustic pho-
nons, The measured spectra show, in addition
to the usual Rayleigh wave, the existence of a
continuum of modes with surface character whose
frequencies w lie between the transverse and

longitudinal bulk thresholds. The line shape of
this structure appears to be different in metals
(optical absorption coefficient n,>1) and semi-
conductors below the absorption edge (r,<1): The
spectra of the former present a broad shoulder,
while the latter show a rather narrow peak lo-
cated just below the longitudinal threshold.

The nature of the shoulder in the case of metals
has been recently explained in terms of scatter-
ing from surface ripples,* which in turn is pro-
portional to the normal component of the surface
density of phonon states (SDPS). This quantity
has been computed by Loudon* for an isotropic
elastic medium and shows good agreement with
the experimental spectrum of polycrystalline Al
The SDPS of a metal (tungsten) has been also
evaluated independently by the authors® in the
frequency range of interest, within a microscopic
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