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the surface and therefore reduces the surface
viscous damping. This helps explain the reduc-
tion in resistivity with increasing surface mag-
netic fields.

Within the present range of parameters the cur-
rent channel does not pinch because the plasma
pressure gradient (Fig. 2) is just sufficient to
counteract the gradient of the self-pinching mag-
netic field, the pinching condition being SnKT/
(8, '/Bm) &1.~/L~, where B, is the magnetic field
produced by the induced current and L p and I-~
are the gradient scale lengths of the plasma pres-
sure and magnetic field, respectively. Accord-

ing to our data in Fig. 4 both nKT and B, (or J'~)
scale linearly with the surface field. We expect
current pinching to take place when the sUrface
field and the induced current are further increased
beyond the present marginal balancing situation.
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2
T& cannot be measured in the usual way because the

plasma undergoes E && B inward motion during the Ohmic
heating phase.
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The collisionless universal instability in slab geometry with a sheared magnetic field

is considered. jt is shown from the differential eigenvalue equation that no bound grow-
ing eigensolutions exist. The method of solution consists of first assuming that exponen-
tially growing eigenmodes exist and then forming quadratic quantities from which a con-
tradiction is obtained. The relation between the eigenmodes and convective modes is
discussed.

Recently, several authors have considered the stability of drift-wave eigenmodes in a sheared mag-
netic field. "' By employing numerical and approximate analytical procedures, the conclusion was
drawn that the discrete eigenmodes were stable. The proof of this conclusion is the subject of this I et-
ter.

The stability problem will be approached by assuming that unstable, bound modes exist. Then, quad-

ratic forms will be derived from the governing equations from which it will be seen that the initial as-
sumption leads to a contradiction, hence proving that there are no bound eigenmodes.

The starting point is the well-known eigenvalue equation for the perturbed drift-wave potential in a
sheared magnetic field, "'
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where r =x/p„x is the direction of inhomogene-

ity, p,'=cT, /eBQ;, &u~ =k,cT/eBr„, r„'= -n '(x)
xdn/dx, 0,- =eBJrn, c, B=B,(a, +xa, /f, , ), (u is
the mode frequency, 5'=k, 'p, ', k„=k„x/&„and
Z is the plasma dispersion function. Equation
(1) is derived by treating the ions as a cold fluid
subject to the Ex B and polarization drifts and

retaining the effects of inertia when motion along
the field is considered [here E= —Vq(x) exp(ik, y
—iet) is assumed]. The electrons are governed
by the drift kinetic equation with only Ex B drift.
Equation (1) is obtained by demanding the elec-
tron and ion density perturbations be quasineu-

tral. It is assumed in equilibrium that only a
density gradient is present.

Equation (1) is derived for real f (real x), but
it can be considered to apply in the complex p

plane. In particular, Eq. (1) will be considered
as it applies on the line g = -i&op/~co+) where ri is
real and positive. On this line the electron con-
tribution, 1+(&o/)k~~v, ()Z(&u/~kpvJ), is found to be
purely real and positive. Thus, quadratic forms
integrated along this line (henceforth called the

q line) will be particularly simple.
Before making the transformation & = -i&up/
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l~+l in Eq. (1) the asymptotic behavior of cp(f)
must be considered. It must be shown that if y(0)
is bound on the real P axis then it is bound on the
»I line as well. From Eq. (1) it is seen that as f

(2)

Thus, for a growing mode (&o =or„+iy) y(»I)-0 for
real »l as»I- ~. That cp(q) decays in this manner
quarantees that the continuation of the integration
path has not crossed an anti-Stokes line.

Attention is now turned to the analytic continua-
tion of the electron contribution from the real &

axis to the g line. The electron term is given by

is the appropriate asymptotic behavior when +
=v„+ iy, y&0. To determine the asymptotic be-
havior of y(p) on the»I line the location of the
Stokes lines implied by Eq. (2) must be consid-
ered. Figure 1 shows the location of the g line
and the Stokes lines in the complex f plane for
the separate cases co„&0 and ~„&0. In both cas-
es a Stokes line lies between the g line and the
real f axis. However, the asymptotic solution
given by Eq. (2) is subdominant on these Stokes
lines so that the transformation t; = -ice»I/l or+i can
be inserted in Eq. (2) to obtain the asymptotic be-
havior on the g line,

where a=k, v, p, /(lou„lL, ). Without loss of gen-
erality we take k„and hence a to be positive. The
causality condition (y &0) properly defines the
path of integration in the t plane around the singu-
larity in Eq. (3) for P real and positive. As f is
rotated to the g line the singularity rotates in the
opposite sense. The locations of the singularity
in the t plane for f real and positive and f on the

g line are shown in Fig. 2 again for the separate
cases w„&0 and &„&0. In both cases the singu-
larity rotates away from the integration contour

x'
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{a)

x'

{bl

FIG. 1. The location of (i) the Stokes line and {ii) the
line in the f plane for (a) co~&0 and {b) u„«.

FIG. 2. The contour of integration and the location
of the singularity of Eq. (8) in the t plane for (i) & real
and {ii) & on the g line. Shown separatel. y are the cases
(a) (u„& 0 and (b) cu„& 0.
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so that no deformation of the contour is neces-
sary. The result is

considered g(q) wouM be divergent] .
Upon making the transformation ( = i&up/~ ~~~,

Eq. (1) becomes

where

exp( t )g ff
g g 2+g'q t

[if only the resonant part of the Z function were
I

(0~ QPg sp
~ ~ 2 g(7J)Ng

y d'g
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2( (

=0,

Multiplying Eq. (5) by y*, integrating from q = 0
to q =~, taking into consideration that q vanishes
at q=~, and either q or ecp/sq vanishes at es=0,
and separating real and imaginary parts yields
the two quadratic forms,

(6a)
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If z„/~~ &0, Eq. (Ga) cannot be satisfied yielding a contradiction. Thus, there are no eigenmodes with
~„/up~ &0. If &u„/su~ &0, Eq. (6a) can be substituted into Eq. (6b) giving,

which cannot be satisfied. Thus, the assumption that bound, growing eigenmodes exist has led to a
contradiction, thereby disproving the existence of such modes.

The preceding analysis has not shown that there is no universal instability, merely that there are no
unstable eigenmodes. The stable eigenmodes which are bound in the sense of Pearlstein and Berk, '
that is as P- ~ ion Landau damping will cause the mode to decay, do not form a complete set. This
can be seen by adopting the initial-value approach of Coppi et a/. If (d is treated as a I aplaee variable
and a function f (f, &u) representing initial conditions is added to the right-hand side of Eq. (1) the gen-
eral solution for y(P, t) is given by

(~ t) ~+
dye 'Pa( x)+ 9)5( « t +)

y (ff ~) ex ( t~t)
W„a&

where y, and y~ are homogeneous solutions of
Eq. (1), W,~(&o) is the Wronskian formed from p,
andy„K, =f if l&f', 0, =l' if «0', f«=L' if &

&P', g«=& if f&f', and y, and cp, satisfy the ap-
propriate boundary condition [Eq. (2)] at + ~ and
—~, respectively. The contour X, extends from
+ ~ to —~ in the upper half of the & plane, In or-
der to determine the long-time behavior of p(&, t)
the contour L must be pushed into the lower-half

plane. Clearly there will be contributions from
the singularities W,~(m) =0, (the eigenmodes)
which have just been shown to occur for Im(~)
&0. There will also be contributions from the
singularities of y, and y~ (convective modes)
which occur for + =0 [cf. Eq. (2)]. Thus, the
long-time evolution of the initial disturbance is
dominated by the convective modes. The stabil-

ity condition in this case is given by

where no is the number of e foldings of a convec-
tively unstable wave that can be tolerated as it
propagates from g =0 to P = ~ where it will be
damped by the ions. This stability condition also
appbes to the test-particle noise-amplification
problem, "in which case no is a measure of the
amount of noise amplification that can be tolerat-
ed. Equation (8) was found by means of a WEB
method. However, for the large values of L, /y„
required to give significant amplification the
%KB approximation should be valid.

In conclusion, it has been shown that the eigen-
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modes of the collisionless universal instability
are stable and that the long-time behavior of an
initial disturbance is dominated by the convective4
modes.
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The rotation of physisorbed monolayers with respect to the substrate was first pre-
dicted by Novaco and McTague in the harmonic approximation. An anharmonic theory

of this effect is given here. The rotation takes place at the commensurate-incommen-

surate transition, provided the longitudinal sound velocity of the free adsorbate is more

than twice as large as the transverse sound velocity.

Physisorbed monolayers often show phases
which are incommensurate with the substrate. ' '
Similar discommensuration effects have been ob-
served in charge-density waves, 4 ~ ' liquid crystals
under certain conditions, "ferroelectrics like
NaNO„and many magnetic materials. However,
adsorbed layers have particular properties due
to the simultaneous existence of transverse and
longitudinal modes. For instance, in certain
cases, the adsorbate is tilted with respect to the
substrate. This effect was' first predicted by
Novaco and McTague, using the harmonic approx-
imation. '

This paper gives an anharmonic treatment of
the effect. One advantage of the approach is that
the anharmonic theory can be applied near the
commensurate-incommensurate (C-I) transition,
when the harmonic approximation cannot be used.
Furthermore, our treatment is simpler and yields
the energy as an extremely simple function of the
tilt angle, whereas Novaco and McTague obtained
the energy as an infinite sum from which the dom-
inant term is difficult to extract.

As suggested by Venables, ' the adsorbed layer
is treated as a succession of domains separated
by walls. [The terminology "dislocation"' or

"soliton" is sometimes used. We prefer the word
"wall" for a (D -1)-dimensional steady defect
"dislocation" for a (D —2)-dimensional defect, and
"soliton" for a propagating defect. 7 Inside each
domain the system is assumed to be harmonic and
nearly in registry with the substrate. Thus all
anharmonic features are contained in the walls.
This approach is especially appropriate near the
C-I transition, when the distance I between walls
is large with respect to the wall thickness 1/Ii.

Pseudohaxmoni c theory: Basic equations. —Let
the adatoms be labeled by a D-dimensional vector
index x = (x„x„.. . , x~) and let R(r) = (A;, X„... ,
X~) denote their position. For physical applica-
tions B= 2. More precisely, r can be chosen as
the position that the adatom would occupy at zero
temperature in the absence of interaction with the
substrate, i.e., in the "free" adsorbate. Then the
components of the strain tensor are'

U„&(r) = 28 „[X&(r)—x&7+ 28&[Xgr) —x 7, (1)

where n, y=1, 2, . . . , D and 8„=8/Bx . The ad-
sorbate is treated as an elastic continuum.

The registered state corresponds to R(r) = Cr
+B, where C and B are constants. The appropri-
ate generalization for the incommensurate phase
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