⁶B. Mühlschlegel, D. J. Scalapino, and R. Denton, Phys. Rev. B 6, 1767 (1972).

⁷B. Abeles and J. J. Hanak, Phys. Lett. <u>34A</u>, 165 (1971).

⁸R. L. Filler, P. Lindenfeld, and G. Deutscher, Rev. Sci. Instrum. <u>46</u>, 439 (1975).

⁹M. Gershenson and S. Alterovitz, Appl. Phys. <u>5</u>, 329 (1975).

¹⁰R. L. Greene, C. N. King, R. B. Zubeck, and J. J. Hauser, Phys. Rev. B 6, 3297 (1972).

¹¹W. L. McLean, P. Lindenfeld, and T. Worthington, in *Electrical Transport and Optical Properties of Inhomogeneous Media*, AIP Conference Proceedings No. 40, edited by J. C. Garland and D. B. Tanner (American Institute of Physics, New York, 1978), p. 403. ¹²B. Abeles, Phys. Rev. B <u>15</u>, 2828 (1977).

¹³P. G. de Gennes, private communication.

¹⁴W. L. McLean and M. Stephen, private communication.

¹⁵B. Abeles, Ping Sheng, M. D. Coutts, and Y. Arie, Adv. Phys. <u>24</u>, 407 (1975).

¹⁶B. Abeles, *Applied Solid State Science* (Academic, New York, 1976), Vol. 6.

¹⁷P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. <u>31</u>, 44 (1973).

 18 V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963).

¹⁹W. L. McLean and M. Gershenson, to be published. ²⁰D. Abraham, G. Deutscher, and R. Rosenbaum, to be published.

New Hybrid Photoconductivity Technique for the Investigation of CO₂-Laser-Induced Hot-Carrier and Free-Carrier Absorption Effects in Degenerate *n*-InSb at 1.8 K

D. G. Seiler, J. R. Barker, ^(a) and B. T. Moore Department of Physics, North Texas State University, Denton, Texas 76203 (Received 12 April 1978)

Free-carrier absorption of tuned CO_2 -laser radiation is shown to be a valuable new tool for the extraction of information on photoheated hot carriers and the free-carrier absorption coefficients in low-concentration, degenerate *n*-InSb at liquid helium temperatures. The technique exploits parallel photoheating and dc-heating experiments conducted in a regime where conductivity changes are unambiguously determined by mobility changes.

Illumination of semiconductors with intense laser radiation leads to carrier heating.^{1,2} Studies of hot-carrier distributions are important because they yield information concerning the electron-electron and electron-phonon interactions in semiconductors. Here, we report for the first time free-carrier absorption-induced photoconductivity measurements on degenerate n-InSb under optical excitation at CO₂-laser wavelengths that allow extraction of electron temperatures. Furthermore, we present the results of a unique combination of independent electrical and laser experiments carried out at liquid helium temperatures on the same low-concentration sample of n-InSb. that allows, in principle, the precision extraction of the free-carrier absorption coefficient as a function of CO_2 laser frequency and laser power. These absorption coefficients are so small at 10 μ m that their determination from classical optical absorption measurements alone would prove impractical. Consequently, these novel hybrid experiments and their interpretation result in the *first* reported estimates for the freecarrier absorption coefficient of low-concentration $(1.4 \times 10^{15} \text{ cm}^{-3}) n$ -InSb.

Figure 1 shows a block diagram of the equipment used in this experiment. The sample, immersed in liquid helium in a variable-temperature optical Dewar, was illuminated with a laser pulse produced by mechanically chopping a beam $(\text{TEM}_{00} \text{ mode})$ from a grating-tuned cw CO₂ laser which provided single-line outputs of several watts from ~9.2 to ~10.9 μ m. In the present experiments, a laser pulse with a width of ~ 20 μ sec [FWHM (full width at half-maximum)], a rise and fall time of $\sim 2 \ \mu sec$, and a repetition rate of ~1700 Hz were employed. The laser pulse was positioned to illuminate the region of the sample between the potential contacts. Calibrated filters of either CaF₂ sheets or sheets of Teflon or some combination of both were used for attenuation.

Figure 2 shows comprehensive results obtained from three separate experiments on how the mobility changes with (1) applied electrical power P_F per electron (obtained from electrical heating

FIG. 1. Block diagram of experimental apparatus.

experiments as $e \mu E^2$) as shown in Fig. 2(a); (2) lattice temperature T_L as shown in Fig. 2(b); and (3) peak incident laser power P_I as shown in Fig. 2(c). The electron concentration was determined to be 1.4×10^{15} cm⁻³ from the period of Shubnikov-de Haas (SdH) oscillations and is *constant* at these lattice temperatures and low laser powers where two-photon absorption processes are completely negligible. Consequently,

$$\Delta \sigma / \sigma = \Delta \mu / \mu = \Delta V / V_0, \qquad (1)$$

where $\Delta \sigma = \sigma - \sigma_0$, $\Delta \mu = \mu - \mu_0$, and $\Delta V = V - V_0$ are the changes in the conductivity, mobility, and voltage drop across the sample leads, as either T_L , P_I , or P_E is varied while the other two variables are held constant. The values of

FIG. 2. Mobility changes with (a) applied electrical power per electron P_E (which for a given electric field E is calculated from $e\mu E^2$), (b) lattice temperature T_L , and (c) peak incident laser power P_I . Note that in all cases the mobility increases with either P_E , T_L , or P_I .

 σ_0 , μ_0 , and V_0 are determined at zero laser power ($P_I = 0$) under Ohmic conditions at a lattice temperature of 1.8 K.

As shown in Fig. 2(b), the mobility at $P_I = 0$ obtained using Ohmic electric fields increases with lattice temperature which is consistent with completely dominant ionized-impurity momentum relaxation.³ We find $\sigma_0 \sim 19.3 \ (\Omega \ cm)^{-1}$, $\mu_0 \sim 8.6 \times 10^4 \ cm^2/V \cdot sec$, in agreement with other experimentally determined mobilities with similar electron concentrations and lattice temperatures.^{4,5} At 77 K, σ_0 and μ_0 rise to 75 $(\Omega \ cm)^{-1}$ and 3.2 $\times 10^5 \ cm^2/V \cdot sec$, respectivley.

The CO₂-laser radiation is partially absorbed via free-carrier absorption processes and subsequently leads to a mobility increase as observed in Fig. 2(c) where $\Delta \mu / \mu$ is plotted versus P_I , the peak incident laser power at a constant lattice temperature of 1.8 K. An electron temperature T_e^0 can be determined for each wavelength and value of P_I by making a one-to-one correspondence between the mobility changes in the two cases shown in Figs. 2(b) and 2(c). For example, Fig. 2(c) shows that for a peak incident power of about 1.16 W, $\Delta \mu / \mu \approx 0.10$, which corresponds to a temperature $T_e^0 \sim 6$ K.

The lines shown in Fig. 2 are the "best fit" lines through the data points. Consequently, a plot of $T_e^{\ 0}$ versus P_I can be made as shown in Fig. 3. Provided the steady state is controlled by intercarrier collisions, the carrier distribution will be a heated Fermi-Dirac distribution with a true electron temperature T_e which may be identified with $T_e^{\ 0}$ if the carrier heating maintains the system within the regime dominated by ionized-impurity-limited mobilities. The steadystate remnant excitation pulse at $\epsilon \sim \hbar\omega + \epsilon_F$ will have negligible effect on the mobility at our low excitation rates: The low-energy carrier assembly is only minutely depleted by photoexcitation.

The procedure may be repeated at zero laser power ($P_I = 0$) with $T_L = 1.8$ K but instead using a pulsed dc electric field of $20-\mu$ sec duration to heat the carriers into the warm-electron regime. These pulsed-current techniques were used to avoid sample lattice heating at high electric fields. Figure 2(a) shows the resultant mobility change versus applied electrical power P_E for the same sample. The extracted effective electron temperatures $T_e^{\ E}(P_E)$ may be again identified with the true electron temperature T_e under appropriate conditions. In such a case, we may invert the functional relations $T_e^{\ 0} = T_e^{\ 0}(P_I)$ and $T_e^{\ E} = T_e^{\ E}(P_E)$ to deduce the thermodynamic rela-

FIG. 3. Electron temperature T_e vs peak incident laser power P_I for various CO₂-laser wavelengths.

tionship $P_E = P_a(P_I)$ under the constraint $T_e^{\ 0} = T_e^{\ E}$ = T_e , where P_a is the portion of absorbed optical power per electron transferred to the carrier assembly via intercarrier collisions prior to dissipation to the lattice. The *extreme* case (Model I) occurs when the intercarrier energy-loss rate Γ_{ee} (scattering-out term) exceeds all other energy-loss rates Γ_{eph} due to photon scattering at all energies up to and exceeding the photoexcitation energies ($\sim \epsilon_F + 4k_B T_e + \hbar \omega$). In this instance P_a = $\alpha(\lambda)dP_i$, where $\alpha(\lambda)$ is the steady-state freecarrier absorption coefficient, d is the sample thickness, and P_i is the incident laser power per illuminated electron. It follows that $\alpha(\lambda, T_e)$ may be extracted exactly as the ratio

$$\alpha(\lambda, T_e) = \frac{P_E(T_e)}{P_i(T_e, \lambda)} \frac{1}{d},$$
(2)

where we make explicit the wavelength (λ) and electron temperature (T_e) dependences.

Our estimates of the critical carrier concentration n_c for which the condition that $\Gamma_{ee} \gg \Gamma_{e \ ph}$ ensures a valid electron temperature model are based on similar calculations due to Stratton⁶ but for relaxation against a *degenerate* distribution in the presence of Thomas-Fermi screening. While the present sample concentration satisfies $n \gg n_c$ for energies $\epsilon \leq \epsilon_F + \hbar \omega_L$, where ϵ_F is the Fermi energy and $\hbar \omega_L$ the LO phonon energy, we

FIG. 4. Effective free-carrier absorption coefficient, $\alpha_{\rm eff}$, vs wavelength of the CO₂ laser at various electron temperatures T_{e} .

find $n < n_c$ for higher energies where energy loss to the lattice is controlled by fast polar-mode optical-phonon emission processes. In these circumstances (Model II) we might anticipate that a substantial fraction β of the optically absorbed power per electron, $P_a^{0} = \alpha dP_i$, is transferred to the lattice by optical-phonon cascading as the photoexcited electrons scatter to energies below the threshold for which $\Gamma_{e\,ph} > \Gamma_{ee}$. The residual power, $P_a = [1 - \beta(\lambda)]P_a^0$, will then be effective in heating the carriers into a Fermi-Dirac distribution with electron temperature T_{e} via intercarrier collisions. The subsequent quasithermalized distribution will then lose energy to the lattice via predominantly acoustic phonon processes at the rate $[1 - \beta(\lambda)]P_a^0$. In this case we find

$$[1 - \beta(\lambda)]\alpha(\lambda, T_e) = \frac{P_E(T_e)}{P_i(T_e, \lambda)} \frac{1}{d}.$$
 (3)

The analysis of Models I and II may be summarized by the general expression

$$\alpha_{\rm eff}(\lambda, T_e) = P_E(T_e) / P_i(T_e, \lambda) d, \qquad (4)$$

which relates an *effective* free-carrier absorp-

tion coefficient $\alpha_{eff} = \alpha(1 - \beta)$ to experimentally accessible quantities. Model I involves $\beta = 0$. Experimentally, as shown in Fig. 4, we find values for α_{eff} in the range 0.005–0.03 cm⁻¹ for the electron temperature and wavelength ranges 3.5– 6 K and 9.27–10.72 μ m, respectively. We note that at 10.6 μ m typical values for α have been reported in the range 0.3 to 0.6 cm⁻¹ for a higher concentration of ~10¹⁶ cm⁻³ at low temperature.⁷

Plots of α_{eff} versus λ^2 for the range of available wavelengths indicate an approximately linear variation with values extrapolated to zero wavelength of order -0.03 cm⁻¹. These nonzero *negative* extrapolated values are consistent with a *non*zero loss factor $\beta(\alpha)$. The finite width of the excitation pulse $\Delta \epsilon \sim \epsilon_F + 4k_B T_e$ precludes a strong oscillatory photoconductivity effect [$\beta(\lambda) \sim 1$]. Indeed, the presently available spread of photoexcitation energies $\Delta \epsilon < \hbar \omega_L$ is not sufficient to expose any definite oscillatory structure although a minimum in α_{eff} may be indicated at $\lambda = 10.49$ μ m. Further experiments are in progress on other concentration samples to investigate the physical origin of the nonzero loss factor β .

The authors gratefully acknowledge the partial support of this research by the U. S. Office of Naval Research and helpful discussions with A. L. Smirl.

^(a)On leave from Department of Physics, University of Warwick, Coventry, United Kingdom.

¹J. Shah, Solid State Electron. <u>21</u>, 43 (1978).

²B. T. Moore, D. G. Seiler, and H. Kahlert, Solid State Electron. <u>21</u>, 247 (1978).

³G. Bauer, in *Springer Tracts in Modern Physics* (Springer, Berlin, 1975), Vol. 74, p. 1.

- ⁴H. P. R. Frederikse and W. R. Hosler, Phys. Rev. 108, 1136 (1957).
- ⁵E. H. Putley, Proc. Phys. Soc., London <u>73</u>, 280 (1958).
- ⁶R. Stratton, Proc. Roy. Soc. London, Ser. A <u>246</u>, 406 (1958).
- ⁷R. B. Dennis, C. R. Pidgeon, S. D. Smith, B. S. Wherret, and R. A. Wood, Proc. Roy. Soc. London, Ser. A <u>331</u>, 203 (1972).