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Computer Simulation of the Dynamics of a Single Polymer Chain
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We have carried out computer simulations of the dynamics of a model polymer chain
in a solvent. We find that the structure function scales for different chain sizes N as a
function of q = kN" with v = 0.6 = exponent for the radius of gyration. Furthermore,
S(q) -q 5 3 over a wide r~~e, as predicted by Edwards. Time-dependent correlation
functioas appear to scale as tN", with n = 2v+ 1. The time-displaced structure function
is of the form S(kN', tN").

Computer calculations, and in particular Monte
Carlo methods, have been used previously to find
the equilibrium properties of a single chain in a
solvent. It was found, for example, that if there
are excluded-volume interactions between ele-
ments of the chain, then the size of the chain
grows as N', where N is the number of beads
and v= 0.6, in agreement with theories proposed
by Flory, ' Yamakawa, ' Domb, ' and de Gennes.
Dynamical calculations of large polymers have
thus far been confined to lattice models' which
have been criticized as being too dependent upon
the rules for jumping. ' Indeed, it is not at all
apparent that a lattice model can represent the
dynamics of a real polymer since many of the im-
portant motions may be small bending and stretch-
ing movements and not discontinuous jumps.

We have chosen the "bead-spring" model to rep-
resent the polymer chain: "N" beads with coor-
dinates R = (r,. : 1~i ~ N}, connected by harmonic
springs. A repulsive, short-range, excluded-
volume interaction 4(r;&) acts between all pairs
of beads. The total potential energy of the chain
ls

U(R) = g —,'«(r, -r„,)'+ Q C(lr, —r, l),

4~[(c/r)" —(v/r)'+ ,'], r 2"'v-, -
C(r) = (2)

(~ 0 r~ 2"'o

The potential of Eg. (2) is stiff enough for small

z, ,- that the "excluded volume" depends weakly on

&; ~ =0 corresponds to the Rouse-Zimm model.
Following the work of Kirkwood' a1.3 Rouse' we

assume that the velocity of the polymer is pro-
portional to the forces acting on it at any time;
this is the high-viscosity limit in which inertial
terms are neglected. Neglecting also hydrody-

namic forces, we then have for the velocity of
the jth bead at time t

v,.(t) = —PDV, U(R) + W(t).

Here P is the reciprocal temperature of the sol-
vent, D is the diffusion constant of a monomer,
and 8' is a Gaussian fluctuating "Langevin force"
(due to the solvent) with mean (W(t)) = 0 and co-

'

variance (W(t, ) ~ W(t, )) = 6DB (t, —t,). This leads to
the Smoluchowski equation for the time evolution
of the polymer probability density f (R, t),

sf (R, t)

=DP V, [V,.f(R, t)+Pf(R, t)V, U(R)]. .

The solution of (3) approaches equilibrium as t
f (R t) Z -le -U(n)

The solution of the diffusion equation (4) was
generated by a Monte Carlo random stalk: Full
details will be given elsewhere. We mention here
only that our basic time step was chosen to be ~
= 0.01 in units of cr'/D; distances were measured
inunits of o, and we set P«=2, Pe =0.1. Both
static and dynamic results given below corre-
spond to equilibrium ensemble averages and are
denoted by (. . .).

The mean-square end-to-end vector

L=r&-r, , (5)

and the radius of gyration
N

O'= —Q (r, —Z)',

Z the center of mass, are given in Table I. With-
in statistical errors Q'= 0.3N" and L'= 6Q'.
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TABLE I. Static properties of our model. N is the number of beads, T is the total
simulation time (in units of o /D&, L is the end-to-end vector, 6 is the radius of gyra-
tion, and R& and Rz are the smallest and second eigenvalues of the moment of inertia
tensor.

«, '&/«'& (It& &/«'&

5
10
20
33
48
63

5x 10
5x10'

7.5 x 103
104

11x 104
8x 10

10.35 + 0.05
27.8 + 0.3

70+ 4
125+ 6
197+ 14
321 + 40

I

1.929 + 0.012
4.65 + 0.04
11.0 + 0.5
19.9 + 0.6

31 + 1.5
48.6+ 5

0.037
0.051
0.053
0.054
0.057
0.050

0.166
0.159
0.157
0.162
0.176
0.157

The moment of inertia tensor is defined by

1
'N

T, =N Q (r, —Z), (r, -Z) .
i= 1

The eigenvalues of this tensor are measures of
the instantaneous "width" of the polymer in the
three orthogonal principal axes, ordered so that
R,'- R,'-R,'. The average values of R,.' are giv-
en in Table I. It is striking that the ratios (R;'&/
@'& depend hardly at all on the number of beads,
and are almost identical with those found in a
nonintersecting random walk on a lattice. '

The structure function' is defined as
N 2

S(k) =(~ p„(R)~ &—= —Q exp(ik r,.)N]
For small k, one gets the Debye moment expan-

s&on

S(k) =1-G'k'/3+a(k'), kG «1.
For intermediate k, 1/G & k & 2, the excluded-
volume interaction causes the scattering func-
tion" ' to behave like P ' . For large k the par-
ticles are uncorrelated and S(k) —1/N. Plotted
in Fig. 1 is S(q) versus logq, q =kN" The . re-
markable insensitivity to the number of beads in-
dicates that even ten beads is near the scaling
limit as long as the probe looks at distances larg-
er than o (i.e. , if k&2/o).

If g(R) is some property which depends on the
configuration of the polymer then the autocorre-
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FIG. 1.: Sz(k) vsq, where q= koN and v=0.6. The
symbols represent the results of six different values
of N (see right-hand scale). The line is 0.3q 5 . For
large k, S(k&- I/N. It is seen that for ko & 2 the
curves coincide.

FIG. 2. C(s; L) vs s. The symbols are the correla-
tion functions I.i.e., CN(sN"; L) I. for six values of N
(see Fig. 1 for key). Vfith o, = 2.13 the solid line is
the average of CN(sN~; L). The lozenges describe
N= 63 for which the statistical errors are large enough
to encompas s the departure from the other curves.
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TABLE II. Properties of the time-dependent correlation functions. n is the scaling
exponent in Eq. (10) determined by least squares. T is the average relaxation rate
[Eq. (12)]. T~ and a; are the relaxation rates and coefficients in Eq. (11) determined
from least-squares fits to the scaled correlation functions. Time is in units of o /D.

Function

C(s; L)
C(s; R3)
C{s;R2 )

C(s; a')
E{s, 2)
F(s, 4)
F(s, 6)
F(s, 8)
F(s, 10)

2.13 + 0.05
2.22+ 0.06
2.0'4 + 0.03
2.21+ 0.06
2.22+ 0.03
2.24 + 0.02
2.11+ 0.02
2.12 + 0.02
2.08 + 0.03

0.069
0.020
0.0075
0.020
0.25
0.048
0.019
0.0067
0.0038

0.91
0.82
0.37
0.76
0.97
0.59
0.47
0.36
0.32

0.096
0.023
0.013
0.024
0.25
0.068
0.032
0.013
0.0080

0.08
0.19
0.64
0.24
0.03
0.36
0.49
0.55
0.59

0.0060
0.0059
0.0040
0.0056
0.020
0.018
0.0074
0.0032
0.0019

lation function of g for a polymer of size N is

(g* (t.)g (t.+ t )&
—I(g(t.)& I'

&lg(t.)l'& —l(g(t. )&l

The autocorrelations for I, L', G', and R for
different values of N appear to scale as

C(s;g) = C„(sN;g). (10)

Here o is that exponent which brings the corre-
lation functions deduced from the computer ex-
periments into least-squares agreement. Shown
in Fig. 2 are C(s; L) and C~(sN"; L) with n =2.10
+0.05. The optimal values for o for the different
correlation functions are given in Table II; it is
seen that they are all between 2.04 and 2.24. All
of the correlation functions seem to be a sum of
exponentials as they are in the Rouse model':

C (s;g) =pa, exp(- s/~, ).
Included in Table II are the parameters of a two-
exponential fit and the mean relaxation time

&=j"C(s;g)ds. (12)

The lattice-dynamical simulations of Kranbuehl
and Verdier" had a much higher value for the
scaling exponent, namely o = 3. It was observed
by Hilhorst and Deutch' that the transition rules
in the lattice model contain subtle constraints
which lead to a slowed relaxation. Our exponents
lie close to the predictions of de Gennes that o.
=2v+1 but cannot be distinguished from renormal-
ization predictions. ' However, as seen in Table
II, there are deviations from universality in the
exponents, which may be a consequence of vary-
ing departures from scaling at small N for differ-
ent functions g. For the Rouse model' o =2.

We have also computed the time-displaced scat-
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FIG. 3. S'(s, q) vs s for three values of q (2, 4, 6).
The symbols represent FN (sN~, qN ~) where v = 0.6
and n(q) is given in Table II. See key in Fig. 1. The
line represents the average F (s, q).

tering functions for chains of different sizes and
found that these can be brought into a universal
form when both k and t are scaled. The function

E(s,q) =(p, (to+t) p, (to)&,

where A =qN ' and t = sN, is plotted in Fig. 3
for three values of q (2, 4, 6). In this figure v

=0.6 and o was obtained by a least-squares fit at
each value of q. Table II contains a (q) as well as
a, (q) and ~,. (q). The exponents n for small q are
very close to 2v+ 1 and the scattering function is
dominated by the diffusive motion of the center of
mass (i, =q '). At larger values of q there ap-
pears to be a systematic decrease in the expon-
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ent v and the relaxation times decrease faster
than q

We would like to thank P. G. de Gennes, J. des
Cloiseaux, G. Jannick, Marvin Bishop, Thomas
C. Collins, and K. Binder for useful conversa-
tions. This work was supported in part by the
U. S. Air Force Office of Scientific Research,
Grant No, 78-3522, and in part by the U. S. De-
partment of Energy, Grant No. EY-76-C-02-
3077*000.

~'~Part of this work was done while the author was at
the Department of Mathematics, Rutgers University.
Present address: NRCC, Lawrence Berkeley Labora-
tory, Berkeley, Calif. , 94720.

P. J. PIory, Pnnclples of Polymer Chemistry
(Cornell Univ. Press, Ithaca, ¹Y., 1958).

2H. Yamskawa, Modern Theory of Polymer Solutions
(Harper, New York, 1971).

3C. Domb, Adv. Chem. Phys. 15, 229 (1969).
4P. Q. de Gennes, Macromolecu1es 9, 587 (1976).
P. H. Verdier and W. H. Stockmayer, J. Chem. Phys.

36, 227 (1962); F. Geny and L. Monnerie, Macromole-
cules 10, 1003 (1977}.

6H. J, HQhorst and J. M. Deutch, J. Chem. Phys. 63,
5153 (1975); H. Boots and J. M. Deutch, J. Chem.
Phys. 67, 4608 (1977).

YJ. G. Kirkwood, MacxonzoEecl, les (Gordon and
Breach, New York, 1976).

BD. Z. House, J. Chem, Phys. 21, 1272 (1953).
D. E. Kranbuehl and P. H. Verdier, J. Chem. Phys.

67, 361 (1977).
P. Debye, J. Phys. CoQoid Chem. 51, 18 (1947).

"J.P. Cotton, D. Decker, B. Farnoux, G. Jannick,
H. Ober, and C. Picot, Phys. Rev. Lett. 32, 1170
(1974)

2S. F. Edwards, Proc. Phys. Soc. 85, 613 (1965).
'~D. E. Kranbuehl and P. H. Verdier, J. Chem. Phys.

56, 3145 (1972); P. H. Verdier, J. Chem. Phys. 59,
6119 (1973}.

'4D. Jasnow and M, A. Moore, J. Phys. (Paris) Lett.
38, L467 (1977).

Heat-Capacity Measurements of the Critical Coupling
between Aluminum Grains

T. Worthington '~ and P. I.indenfeld
Sermon Physics Laboratory, RNtgexs University, New Brunswick, New Jersey 08903

and

G. Deutscher
Department of Physics, Tel Aviv Unive-rsity, Ramat Aviv, Isx-ael

(Received 21 February 1978)

We have measured the heat capacity of granular aluminum specimens with normal-

state resistivities pz between 0.6X10 ~ and 40X10 3 0 cm. The specimens become super-
conducting with a heat-capacity transition which is BCS-like for the lowest pz, and then

diminishes until it is no longer observable for the highest p&. We conclude that the

grains become decoupled such that, because of their small size, they do not exhibit bulk

superconductivity when they are isolated.

When aluminum is evaporated in the presence
of oxygen it deposits in the form of metallic
grains surrounded by insulating oxide, With in-
creasing oxygen pressure the oxide barrier be-
comes thicker, the grains become increasingly
decoupled, and the room-temperature normal-
state resistivity p~ of the specimen increases.
For p„ larger than 10 ' 0 cm the grain size re-
mains constant at about 30 A."

We have made measurements on a series of
granular aluminum films which show that the dis-
continuity in the heat capacity, which is charac-
teristic of bulk superconductivity, is there to its
full extent only in the specimen with the lowest

value of p„(0.6&&10 ' 0 cm). In the specimens
with greater p„ the change in the heat capacity
becomes smaller, and occurs at a lower tempera-
ture and over a wider temperature interval, until
for the specimen with the highest value of ps (40
X10 ' 0 cm) it is no longer observable. We were
thus able to show that when the grains are iso-
lated they show no heat-capacity transition and
that they are, therefore, smaller than the charac-
teristic size below which bulk superconductivity
cannot occur in isolated grains. ' ' In addition,
our results show that there is a rather narrow
range of values of p„, corresponding to a small
change in composition, ' such that on one side of

I
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