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An Auger variant of the x-ray—absorption fine-structure (EXAFS) technique has been
successfully applied to study the adsorption site and adsorbate-substrate bond length in
a single-crystal system. The surface-EXAFS technique should have widespread applica-

tions in surface crystallographic studies.

One of the most fundamental, yet elusive,
questions in surface science concerns the bond
length and position of an atom adsorbed on a *
single-crystal surface, The interpretive difficul-
ties associated with multiple-scattering proc~
esses in low-energy electron diffraction (LEED)
are well documented,’ and the need for a straight-
forward experimental procedure to measure
these surface structural parameters is long over-
due. In this Letter we report the first direct
determination of an adsorbate-substrate bond
length and the site of adsorption on a single-crys-
tal surface using the technique of extended x-ray-
absorption fine structure (EXAFS). The proto-
type (V3 X V3)R30° structure of I adsorbed on
Ag(111) was studied here for purposes of compari-
son with the LEED work of Forstmann, Berndt,
and Biitner? on the same system, Our new sur-
face-EXAFS (SEXAFS) results are in very good
agreement with that earlier study,® but because
of the absence of multiple scattering they are
significantly easier to interpret and are more ac-
curate by over a factor of 4, Preliminary SEXAFS
results from a somewhat higher coverage of I on
Ag(111) have been reported previously® and are
presented here for signal-noise comparison with
the 3-monolayer (V3 xvV3)R30° system. General
and future applications of the SEXAFS technique
are also discussed.

In the SEXAFS experiment, which was per-
formed at the Stanford Synchrotron Radiation
Laboratory, the intensity of adsorbate core Au-
ger electrons is monitored as a function of inci-
dent photon energy.® The basic principle under-
lying the Auger-EXAFS technique is the same as
in conventional transmission-EXAFS experi-
ments, namely the modulation with photon energy
of the photoabsorption cross section by interfer-
ence between outgoing and backscattered core
photoelectron waves. Since each photoabsorption
event ultimately results in the emission of either
a characteristic x ray or an Auger electron, the
intensity of either decay product must be directly
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proportional to the photoabsorption cross section.
In essence, the Auger-EXAFS detection scheme
is the nonradiative analog of the fluorescence-
EXAFS technique, which has been previously
described.®

Directly measuring Auger emission from the
adsorbate atoms with an energy analyzer dis-
criminates against background emission from
the substrate, and thus significantly improves
the signal/background over transmission-EXAFS
experiments, Nevertheless, in order to obtain
sufficiently good counting statistics from so few
absorbers in the synchrotron beam—about 10
atoms, or 10% fewer atoms than are typically
analyzed from EXAFS of bulk systems—it is es-
sential both to increase the brightness of the
present-day synchrotron beam with a doubly bent
focusing mirror and to perform signal averaging,
After ~1-eV monochromatization of the 2,5-mm
X1,5-mm focused x-ray beam, the incident flux
on the sample approached 10! photons/sec. To-
tal data accumulation for the 5-monolayer sys-
tem consisted of approximately 6 h of summed
20-min scans.

The SEXAFS measurements were made at a
base pressure of 4 X107 Torr in a vacuum cham-
ber isolated from the He atmosphere-of the syn-
chrotron beam by a 250- um Be window, In the
same chamber, single-crystal Ag(111) was
cleaned by repeated Ar-ion sputtering and anneal-
ing, and was characterized by LEED and Auger-
electron spectroscopy. Iodine was adsorbed onto
the room-temperature substrate at 2x1078 Torr
while its LEED pattern was continuously moni-
tored. A detailed LEED and Auger study of the
I-Ag(111) system as a function of I exposure will
be reported elsewhere.® Immediately upon ob-
servation of the (v3 Xv3 )R 30° pattern, admis-
sion of I was stopped, the base pressure was re-
stored, and the I-Ag(111) system was cooled to
110°K where it remained during the course of the
experiments, Surface integrity and cleanliness
were inspected periodically. The crystal surface
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was oriented at approximately 20° with respect

to the direction of the synchrotron beam, i.e.,

70° with respect to the polarization of the beam,
The 3300-eV LM, M, . Auger electrons from
adsorbed iodine were recorded with a commercial
cylindrical mirror analyzer. The positive bias
voltage on the sample and the analyzer pass en-
ergy were adjusted to optimize the signal/back-
ground. Onset of I(L,M, M, ;) Auger emission
was observed at a photon energy of about 4560 eV,
corresponding to the I(L,) binding energy. The
ratio of Auger electron intensity to incident pho-
ton flux was recorded as a function of photon en-
ergy, which was scanned about 300 eV above the
I(L,) “edge.”

The raw SEXAFS data of the (V3 xV3)R30°.
structure is shown as curve A in Fig. 1(a). To
aid in identifying the low-frequency fine structure
from the high-frequency noise, we have overlaid
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FIG. 1. (a) Raw data in energy space for three dif-
ferent I/Ag systems, Curves A and B are SEXAFS
(Auger) spectra; curve C is an EXAFS (transmission)
spectrum, Curve C is overlaid on curve A. (b) Raw
data in momentum space after background subtraction
and multiplication by 2 (Ref. 2). Smooth curves are
retransformed and filtered data [see (d)]. (c) Fourier
transforms in distance space of raw data from (b).
The peaks at 2.6 A have been arbitrarily set equal in
height. (d) Normalized, retransformed data from (c)
after filtering with a window from R = 1.6 to 3.8 A,
Note differences in phase and amplitude,
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the transmission EXAFS data from bulk Agl
(curve C, discussed below) onto the SEXAFS da-
ta, For signal/noise comparison purposes we
also show the raw SEXAFS data, curve B, for
an I coverage of 0~1-2 monolayers on Ag(111).
Because of its more complicated structure,® this
higher-coverage phase will be treated in a sepa-
rate work., With extensively tested analysis pro-
cedures described in detail elsewhere,” the raw
data are truncated between 20 and 250 eV above
the I(L,) edge and a smooth polynomial spline
background is subtracted, and after the data
are converted to final-state electron wave vector,
k, they are multiplied by 2% The result is shown
in Fig, 1(b). The Fourier transform of that spec-
trum [see Fig. 1(c)] enables the first nearest-
neighbor peaks at R~1.6-2.6 A to be distinguished
from the noise components at higher frequencies,
The peak at ~1,6 A is a Ramsauer-Townsend
resonance which occurs generally in the back-
scattering phase shift of high-Z atoms. Because
the intensity and position of that peak are sensi-
tive to low-frequency background subtractions,
however, we include only the main peak at ~2,6
A in our analysis of distance and amplitude,® A
smooth window function from R=1.6 to 3.8 A is
used to filter out the 1.6-A and multiple high-fre-
quency components, and the result is retrans-
formed back into & space to give the smooth line
superposed on the raw data in Fig, 1(b), The un-
systematic misfit in amplitude and phase between
the raw and filtered data is almost solely due to
the omission of the 1.6-A peak,® but ultimately
(see below) we are interested only in differences
between the filtered I-Ag(111) and Agl data,

For our study, the filtered SEXAFS spectrum
in Fig, 1(b) can be appropriately described by

x (&) = A(k) sin[2kR + ¢(k)],

where R is the I-Ag distance, (k) is the phase
shift due to the potentials of the I-Ag atom pair,
and A(k) is the amplitude function (normalized

to the edge jump), to be discussed below. It is
by now established that because ¢(k) is chemical-
ly transferable,® it can be reliably obtained using
model compounds™® with similar pair-distribu-
tion functions'® to allow determinations of R from
EXAFS data of a wide variety of systems to with-
in 0,02-A& accuracy. To analyze the I-Ag(111)
system studied here, we have empirically deter-
mined the effective I-Ag phase shift from poly-
crystalline y-Agl., The room-temperature Agl
L,-edge EXAFS data were obtained by convention-
al transmission detection procedures and were
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processed exactly as above for the I-Ag(111) sys-
tem. In Figs, 1(a)-1(c) we show the analogous
results for the Agl analysis, and in Fig. 1(d) we
have overlaid the normalized data of Agl(dashed
line) with the corresponding data from I-Ag(111).
Even at this stage it is apparent from the differ-
ence in phases that the I-Ag(111) bond length is
larger than in Agl. It is straightforward to quan-
tify this result from the data in Fig. 1(d) by ex-
tracting ¢(k) for the I-Ag pair in Agl using a
complex—Fourier-transform decomposition of
phase and amplitude,” With the ¢(k) from Agl
and its I-Ag distance of R=2.803 A,'! we deter-
mine the I-Ag(111) distance to be 2.87+0.03 A.
Analysis of a large sampling of computer-simu-
ulated data of variable signal/noise (significantly
above and below that reported here) has confirmed
the statistical accuracy of the quoted error lim-
its. Experience with numerous other systems
has shown that systematic errors in the data ana-
lysis procedure per se contribute <0.01 A error.
By far the dominant source of uncertainty here
arises from the present signal/noise [ compare
spectra A and B in Figs. 1(a)-1(c)]. To our
knowledge this SEXAFS result is the most accur-
ate determination of an adsorbate-substrate bond
length.

The structural characterization of the I-Ag(111)

system is incomplete without knowledge of the ad-
sorption site. The single distance in the SEXAFS
data in Fig. 1(a)—and even that of the room-tem-
perature Agl EXAFS data with superior signal/
noise—indicates the predominance of nearest-
neighbor scattering and thus in this system pre-
cludes site identification on the basis of next-
nearest—neighbor distances.* It is possible, how-
ever, to determine the adsorption site from A(k).
For a single-distance system, and for strictly

p —d dipole excitation,'?!® this can be generally
expressed by

A(k) < (N/ER2) f (k, m) exp(~20?%k2)e 2R/ M&)
szi%*' “g.;ilz),

where f(k, m) is the backscattering amplitude,
exp(-20°k?) is a Debye-Waller-like factor with
rms deviation 0, and e 2%/ M#) jg an inelastic loss
term with mean electron escape depth A. N is the
effective coordination number determined from
the projection of the polarization of the synchro-
tron beam € onto the unit vector r ; that connects
the absorbing atom to the 7th atom in the coordi-
nation sphere. Denoting the I-Ag(111) surface
and Agl bulk systems by S and B, respectively,
and assuming that A(k) is comparable in both, we
obtain

1n[A g(B) /A x(B) ] = In(N R z2/N gR®) + 2k*(0 2 = 0?) +2(R5— Rg)/MR) .

The last term is negligible within our experimen-
tal uncertainty since 2(Rz—- Rg) <A(k). From the
remaining linear plot in 4% and knowledge of R
and Ry we can thus determine the effective co-
ordination number of the adsorbed I atom, i.e.,
the adsorption site. [We can, of course, also
determine (0g? - 0%, but because the Agl and
I-Ag(111) data were taken at different tempera-
tures we defer this question for a future study. ]
In Table I we have listed the values of N4 calcu-
lated for € in the present experiment with adsorp-
tion sites of the symmetric onefold, twofold,

and threefold coordination sites on the (111) sur-
face. Also included is N g for the tetrahedral
coordination in polycrystalline Agl. Comparison
of these calculated values with the experimentally
determined N g shows that only the threefold co-
ordination site of adsorbed I lies within our ex-
perimental limits, consistent with the compari-
son approach in the earlier LEED study of Forst-
mann, Berndt, and Blittner.? In general, to de-
termine the adsorption site more unambiguous-

ly—in the absence of clearly observable second-
nearest-neighbor distances—will require im-
proved signal/noise and at least two measure-
ments with the polarization directions parallel
and perpendicular to the surface (lower-symme-
try sites may require still an additional orthog-
onal measurement with € in the surface plane).
In the first application of the SEXAFS techni-
que, it is appropriate to point out its general
strengths and limitations, as well as its future
capabilities, As emphasized here, SEXAFS al-
lows bond lengths of adsorbates to be determined

TABLE 1. Values of Ny=; (5 + 1€+ %;1) to deter-
mine adsorption site,

Agl -Ag(111) (calc) I-Ag(111)
(calc) 1 2 3 (expt)
2,66 1.21 1.99 2.81 3.2+.,8
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directly and accurately without reliance on multi-
ple trial calculations. Temperature studies can
also provide important information about Debye-
Waller effects of surface atoms. In general, the
adsorbates need not be ordered and the substrate
need not be a single crystal. However, use of
the polarization dependence of A(k) in single-
crystal systems may be essential for distinguish-
ing between adsorption sites when second—-near-
est-neighbor distances are not readily observa-
ble, The SEXAFS technique should be applicable
to any adsorbate atom or molecule with Z =6
whose core Auger electrons are energetically
resolvable from those of the substrate and other
atoms in the molecule, For low-Z adsorbates,
however, the possible introduction with scanning
photon energy of other Auger channels and/or
primary photoemission from the substrate may
require taking difference or partial-yield spectra.
Future areas for development and improvement
include more efficient and better-matched photon
monochromators, thinner or removable Be win-
dows, a more efficient energy analyzer, and
more intense and brighter sources of synchrotron
radiation, All of these areas, which are current-
ly being developed, could enhance signal rates by
as much as 102-10% and allow data such as re-
ported here to be taken in a matter of minutes or
seconds.

In summary, the SEXAFS technique has been
shown to be a valuable complementary surface
probe. Coupled with Auger electron spectroscopy
and LEED, it should make it possible to charac-
terize with the same apparatus both the electron-
ic structure of surfaces using photoemission and
the short-range geometrical surface structure
using SEXAFS.
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