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It is shown that the B phase not only has a "phase dynamics" such as that in He II, but
also an orbital dynamics somewhat similar to that of He-A or a nematic liquid cyrstal.
The rederived B-phase hydrodynamic theory, complete with nonlinear terms, establishes
the equivalence between rotations in orbital and spin spaces and shows the intriguing pos-
sibilities of generating a magnetization by mechanical rotations and of substituting the
magnetic field with oscillating parallel plates in "NMR" experiments.

The most exciting aspect of the two superfluid
phases of 'He is the richness of their spontane-
ously broken symmetries. The B phase, in par-
ticular, exhibits the rather subtle concept of spon-
taneously broken spin-orbit symmetry (SBSOS)
introduced by Leggett, which is a broken sym-
metry only of ~elative spin-orbit rotations. ' In
previous studies of B-phase dynamics, "howev-
er, the consequences of SBSOS seem indistinguish-
able from those of the broken rotational symme-
try in spin space alone, such as that present in
an antiferromagnet or a spin glass. This is in-
deed disturbing because it defies the general be-
lief in the intimate relation between the spontane-
ously broken symmetry and the hydrodynamics of
a system. The discrepancy warrants the effort
to reinvestigate B-phase dynamics. One can
plausibly expect a system with SBSOS, in which

the orbital variables are kept constant, to behave
as if only the rotational symmetry in spin space
were broken, and based on this argument, B-
phase spin dynamics has been successfully in-
vestigated. ' But we can also turn the a,rgument
around to conclude that keeping the spin variables
constant, the system has to account for the three
broken orbital symmetries (as would be present
in the hypothetical biaxial nematics), and its dy-
namics must therefore differ from the two-fluid
hydrodynamics of He II, where the only broken
symmetry is the gauge invariance. So qualitative-
ly speaking, B-phase dyna. mics will be given by
the combination of the spin-glass dynamics of
Halperin and Saslow and superfluid biaxial ne-
matodynamics with a number of elastic coeffi-
cients vanishing to reflect the symmetry of the
Balian-Werthamer state, which is invariant un-
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der a simultaneous rotation of both spaces. As
we shall see below, this will give rise to some
intriguing effects, unsuspected hitherto, such as
the generation of a magnetization by mechanical
rotations, enabling one to perform "NMR" exper-
iments without a rf field to excite the resonance.

In what follows, B-phase dynamics will be re-
derived along the line of the above arguments,
with all the terms of second order either in the
wave vector or in the small variables retained.
This has the same accuracy as I andau's two-
fluid hydrodynamics' or the nonlinear 4-phase
dynamics. ' We shall employ the phase 4 and the
relative infinitesimal rotation vector dg to char-
acterize the fluctuations from the equilibrium
state. This yields four independent equations of
motion for the order parameter and represents
the least redundant hydrodynamic description.
Because of the lack of complex constraints, it is
also the simplest one. We define'

dq;=—dj9]'-R; d8 ',
where d0, ' and d8 ' are components of the infini-
tesimal rotation vectors in orbital and spin space,
respectively; Ri, is the order parameter, a spin-
orbit rotation matrix. Actually, dg; is globally
ill defined, but since only its time and space de-
rivatives enter the hydrodynamic equations, this
forms no objection of substance (cf. the analogous
discussions on 'He-A by Brinkman and Cross). '
However, as in the case of the phase variable
there, one has to pay attention to a commutation
rule closely connected to the Mermin-Ho rela-
tion':

where 6 and V stand for any first-order differen-
tial operator such as 8/&t or W„. Equation (2)
can be conveniently proved for any rotation angle
by defining a set of three orthogonal axes. The
fact that dq is a relative rotation angle turns out
to be irrelevant here.

Without the dipole interaction, the energy e can
only depend on V,.g, Since it is impossible to
construct a pure orbital tensor from R, ,

' the
textural part of ~ takes a truly isotropic form ".

I&Vip Vip 2~2Vi&iVm~m

+2~3V g;Vip

For bulk calculations, M, and M, appear only in
the combination I,+M, . The coefficients in Eq.
(3) are chosen to be consistent with the definition
of Ref. 2. One can also arrive at Eq. (3) by tak-

ing & as a function of V;R,.„only, ' and then re-
writing ~ employing the relation

+&=Vj4sz etarV, q„p&i=0,

where explicitly

(, =2M,V g, +4(M2+M3)

(8)

The second term in g, , Eq. (8), arises from us-
ing Eq. (2) in the variational derivative of the en-
ergy, with 5 now the variational operator and V
the spatial derivative. A similar term arises in
the phase dynamics of the A phase. '

We now proceed to investigate the dynamics.
Neglecting the dissipative terms for the moment,
we can write

0„'=Be/BS

6,' = 2 (v x v"), =- 0,
The first equation is well known: It can be de-
rived by arguing along the line of I eggett' that
the total-spin operator is the generator of infini-
tesimal rotations in spin space. The second equa-
tion is slightly more subtle, but also quite famil-
iar from the hydrodynamics of nematics' '" and
'He-A. "*" It is usually derived by expansion of
I9,.' in the thermodynamic force, V v &"~, where

In the B phase the energy is generally given as

d& = T ds + p dp + U i dg i + (d ~ dS~

+j,.'dv, '+ q;,.dv', .q, + y, dq, , (5)

where s, p, g;, and s are the densities of the
conserved quaritities, entropy, mass, momentum,
and spin, respectively. v'= (h/2~)V4 and dq are
the symmetry variables. The conjugate vari-
ables are defined by Eq. (5), and we have, in par-
ticular,

j =p (v' —v") and (u„=(y /y)S„-ya„.
The magnetic field is denoted by H, the gyro-
magnetic ratio by y, and the susceptibility by y.
The tensor (,, is given by the derivative of Eq.
(3), and y, = —yn; where q is the usual dipole
torque (8 V~/&0). Here g and n denote the rota-
tion angle and axis of the matrix 8, , with dg
= —n dq =n ~ (dP -d8'). The equilibrium texture
is given by minimizing the energy, leading to
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an ensuing solid-body rotation gives the coeffi-
cient —,. However, aside from possible ambigu-
ities in more complicated systems, this method
obscures the important fact that the presence of
the vorticity 0; in Eq. (11) is due solely to the
spontaneously broken orbital symmetry. A more
physical approach is given by the complete anal-
ogy between S and the intrinsic-orbital-angular-
momentum density 7, :

H» =8' v» +4 V.0 +f.» " (20)

Since only V„(II;»'+II,,') is defined, we can sub-
stitute II;„'+II;„' with, (ll;»'+ e;» g ), where

al coupling between the spin and orbital dynamics.
In Eq. (17), P denotes the pressure, II,„'—= ——,

'
«,.k 4 is characteristic of the broken orbital
symmetry, and TI,k' represents the generalized
Erikson tensor:

g
o B~/BT, 11,»'= (II,,'+ ~...V, q„») +. (iI —I i). (21)

Although 7; is not a conserved quantity, the en-
ergy depends on it through the relation"

g=p+ zVx 7. ,

where p is the linear part" of the momentum den-
sity g. A partial integration leads readily to Be/

Bv =O. A third method, actually equivalent, con-
sists of studying the explicit equations" of mo-
tion for p and ~, which show that Be/87 relaxes
to ~ in a wave-number-independent time. The
equation of motion for the relevant quantity dg is
given by combining Eqs. (10) and (11):

~m
= m ~m~~n.

It must be stressed that since the energy [Eq. (5)]
does not depend on the quantity do,-'+8,. d9 ', jts
time derivative cannot couple to any of the hydro-
dynamic equations and need not be considered.
Therefore we may expect only three additional
'Spin-orbit waves" rather than six. ' With these
preliminary discussions, it is straightforward
to write down the complete set of hydrodynamic
equations by employing the well-known standard
procedure'" and the symmetry of the B-phase
order parameter:

j+V ~ g= 0, v'+ V(v' ~ v" + p, +Z ) =0, (15)

The dipole torque 2e;k p with its corresponding
term on the right-hand side of Eq. (19) guaran
tees the conservation of total angular momentum
r & g+ S. The entropy production is given by

-R —f» V»T+Z Vg»»+Il; »V»,v

k k +Zo.'i Vi+n &
(22)

Y = —vg
D

~
cubi

—p.lVi&) ~

—(V2R; ( R ~ B + ILBR ~„Rg B )V ~ (u 8 .

(23)

(24)

We shall now employ Eqs. (15)-(19), which repre-
sent a concise nonlinear hydrodynamic descrip-
tion of the B phase, to investigate a few simple
and experimentally relevant situations.

For the uniformly rotating case, the linearized
hydrodynamic equations derived above reduce to

S„=—yg„y +y(Sx H) (25)

where f, , Z, and II,, are, as pointed out by
Graham and Pleiner, ' unchanged from their count-
erparts in the hydrodynamics' of He II. To in-
clude nonlinear terms, Pk and Z,. have to be
slightly generalized from their form as given in
Ref. 3:

s+V~(sv~ +Q&)~»Rq~V»(d~+ f~ ) =R/Tp (16)

g,. +V, P ——,'(Vx e),. + V, (II,,.'+II,,D) = 0, (17)

j,. +(v" ~ V)g,. +R,.„~ ——,'(Vxv"), + Y,. =0, (18)

S -y(SxH)

+V;(S~v;"+$;;R,~+o'e;,»R;„V»T +Z~g )

The dissipative terms are denoted by superscript
D and will be discussed together later. Aside
from the usual convective term sv", ihe entropy
current in Eq. (16) contains a nonlinear reactive
flux preceded by o, which is reminiscent of the
Ho term in the A-phase dynamics. ' With its cor-
responding term in Eq. (19) it forms an addition-

0 = n (&u —0) —vy (26)

In a stack of parallel plates, immersed in 'He-B,
if the viscous penetration depth is larger than the
plate spacing (so that v" will follow the movement
oi the plates), and if the magnetic field H =nPe ' '
and the angular velocity 0 = nAe ' ' of the plates
are perpendicular to the plates, the magnetiza-
tion is given as

y S = (-Q I y/y) (yH + 0) ((u —O~ + i~ I ) '

x exp(- i(ot)n, (27)

where ~ denotes the longitudinal resonance fre-
quency and 1 = A~'yv/y' is the relaxation rate
Note the complete equivalence between rotations
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in spin and orbital space, given by yII and 0, re-
spectively. Thus a longitudinal resonance can
actually be excited by mechanical oscillations
alone. This is also true for a transverse reso-
nance, if n is not aligned along the static magnet-
ic field. " The static magnetization given by Eq.
(27) is y(H+0/y); this latter result has also been
observed in solids with strong spin-orbit coup-
ling and is known as the Barnett effect. There,
however, the magnetization usually relaxes and
does not oscillate.

There is, in principle, also the reverse effect
where an ac magnetic field nPe '~' results in
tiny oscillations of the helium liquid and the
plates. Because in this case 0,. is the fluctuating
variable rather than an external perturbation,
we have to include its equation of motion

0; = (V/I)n;p, (28)

where I denotes the orbital part of the moment of
inertia and V the volume of 'He. The oscillation
can be calculated from Egs. (25), (26), and (28)
and is given by

0 = eO~ yH[(u' —A~'(1+ n)+i(ul"]

x exp(- i&et)n. (29)

Although, strictly speaking, the resonance fre-
ciuency is Q~(1+a)'~' here, the ratio of moments
of inertia in spin and orbit space, o =- XV/yI, is
much too small a quantity to give any measurable
deviation.

We summarize our results briefly: By employ-
ing a "8-phase Mermin-Ho relation" the nonlin-
ear dynamics is derived and given in a simple and
concise form, where the significance of the vor-
ticity as a broken symmetr-y term is emphasized
and the equivalence of rotations in spin and orbit-
al space is demonstrated. Some of the more in-
triguing consequences of the modified dynamics
are the possibility of producing a magnetization
by mechanical oscillations and the coupling of the
spin dynamics to the shear viscosity, which may
help us to understand the puzzling spin-relaxation
behavior. The spectrum of the hydrodynamic
modes, however, remains the same as given by

previous studies. "
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