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A kinetic analysis of magnetohydrodynamic ballooning modes has been carried out in
the limit of large toroidal mode numbers. At marginal stability, the mode acquires a
real frequency. The finite ion Larmor radius and perturbed electron pressure anisotropy
are stabilizing effects, whereas the perturbed ion pressure anisotropy and the longitudinal
electric field are destabilizing. By minimizing the stability effect and maximizing the
destabilizing effect, the critical B may be 10% lower than that predicted by the magneto-

hydrodynamic theory.

Tokamaks achieve stability against pressure-
driven magnetohydrodynamic (MHD) instabilities
at low pressure through the average magnetic
well due to toroidality and through shear in the
magnetic lines of force.* It has been known for
many years that if the plasma pressure exceeds
a critical value, ballooning modes?® could be driv-
en unstable by the localized regions of unfavor-
able curvature. Roughly speaking, the predicted
critical condition is y7 <1, wherey is the flute-
mode growth rates characteristic of the bad-curv-
ature region, and 7, is the transit time of a shear
Alfvén wave between the regions of good and bad
curvature. The critical g depends on the detailed
geometry of the device and may be enhanced by
suitable choice of cross-sectional shape for the
plasma. Recently, some confirmation of the crit-
ical conditions for the onset of ballooning modes
has been obtained through numerical® and analy-
tical* studies of the MHD energy principle. How-
ever, in fusion-reactor conditions, some of the
assumptions for the MHD model may not be satis-
fied. Therefore, in this article we study the sta-
bility of the ballooning modes from a kinetic ap-
proach.

To begin our analysis, we follow Rosenbluth
and Sloan® in developing a variational formulation
for perturbations in finite-$ plasmas, except that
for frequencies w around the ion diamagnetic fre-
quency w;* <<Q; (the ion gyrofrequency) the ion |
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inertia term must be retained. We also extend
their analysis to the “flute” regime where w

> wy;, the ion pounce frequency. The perturbed
electric field E, and magnetic field B, are of the
form exp(iwt —inf). They are rela’g_gd to the scal-
ar potential ¢ and vector potential A by

_]§1=_Vq)—8z/8t, _]§1=VXK5 (1)

The vector potential A is specified through the
displacement £ by
A=ExB. (2)

Only g_l_ enters Ki £, can be chosen to vanish.®
We also require £ = O__at the plasma boundary. The
metric we use is given by dl® =dy?/R®B,? + J°B 2 dx?
+R%d0%,

For variations with respect to ¢* and £* the
variational principle may be written in the form

[Kar+ [war =0, (3)

Here d7 is the volume element, K is a modified
perpendicular kinetic energy density,

4)

p being the mass density, and the electron inertia
is neglected. The perturbed potential-energy den-
sity may be written as

K =-pl&f(o-z0%),
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This is the basic formulation for studying finite-
B plasma modes with frequency ~ w;*. In the
MHD model, the plasma pressure response is
assumed to be adiabatic. Hence the perturbed
potential energy contains a yp(V+%)? term. Aside
from the yp(V+%)? term, Wyp in (6) is identical
to that used by Dobrott ef al.; p, J, and K are
the equilibrium pressure, current, and field line
curvature. In Wyyp, the first term is the energy
needed in bending the magnetic field line, the
second term is the work done in compressing the
magnetic field and the plasma, the third term
drives the kink instability, and the fourth term,
which drives the ballooning and interchange
modes,
and the magnetic field line curvature. W,; is due
to the ion pressure anisotropy, with wp; the ion
magnetic drift frequency and u,; the magnetic
drift velocity; () stands for the average over
velocity space. W, is due to the electron pres-
sure anisotropy; the bar indicates a time aver-
age over the trapped-particle orbit. v is the fre-
quency at which trapped electrons scatter into
the transit regions of velocity space. Wgiz con-
sists of a part due to the shift in the mode fre-
quency, and a part due to the ion pressure anisot-
ropy. W, is the destabilization energy due to the
coupling of the longitudinal electric field to the
perpendicular displacement £,. For simplicity,
in W,; and Wgppr, we include here only the expres-
sions for ions in the flute regime, w>w,;., The
corresponding expression for ions in the trapped |
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is the interaction of the pressure gradient
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regime w<w,; is obvious.

The mode structure is dictated by Wygp. At
marginal stability, w =%w,~*, and K =0, It is easy
to see that when the pressure gradient length L,
is shorter than the magnetic field gradient length
Lg, Wy; <0, Wp,>0, and W,<0, Because of the
negative nature of the V,2 operator, Wy, is al-
ways positive. We note that by taking the limit
m/e—~0, and ¢ —~0, we obtain the energy principle
given by Connor and Hastie to study the trapped-
particle stabilization of localized interchange
modes.® The stabilizing effect of the trapped par-
ticles on the ballooning mode has been noted in-
dependently by Rutherford, Chen, and Rosen-
bluth.”

To evaluate the size of the various kinetic mod-
ification terms, we obtain from (3) the Euler
equation appropriate for high-z ballooning modes.
In the high-z ordering V,~n/R~1/p; and V,~ 1/R,
Following Dobrott ef al.,* we obtain to the low-
est order V+£,(® =0, Therefore ¢,=(1/RB,)a3Y/
90 and &, =—(RB,/B)2Y/93); here, Y is a stream
function, % being in the direction of # ><¢ In the
next order, the kink driving term becomes a com-
plete differential. Minimization with respect to
(v-£,)® gives (with the neglect of terms propor-

tional to SL,/Lp),
(V’g.l_)(l) == 2g.L. K. (11)

We may now vary with respect to ¢* and obtain
the Poisson equation written in the form

L(w)lep/T] =S(w)[E,°%].

L(w) and S(w) are two operators depending on
frequency. At w=3zw;* they are given by

(12)
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In (13) and (14), the () is over the trapped electrons only. With the substitution of L “S[£,*¥] for e¢/T
into (3), the variational is now in terms of only one function, Y. We note that Eq. (12) stands for the
response of the longitudinal electric field to a perpendicular perturbation given by £ K. It is a nonlo--
cal operator characterized by both k . and the average over the trapped-electron trajectory. Here we
make the further assumption that the eigenfunction for £ LK will also be the approximate eigenfunction
for both L and S. Therefore both L and S may be approximated by constants. The resultant variation
with respect to X* =RBpé ,* gives the Euler equation as
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In (15)
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Ky=Ky—K,d/dh, K, and Kk, being the normal and geodesic curvature, g is the contribution from the

trapped-electron response, and A =(w —3w;*)2,
been discussed by Roberts and Taylor.®
tie, and Taylor,® (15) is reducible to

The general characteristics of this type of equation has
By using the quasimode transformation given by Connor, Has-
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X J
with
R2E .2 | perturbed pressures are also anisotropic in KT.
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B Y\ R

9 is the Fourier transform variable® for X. The
boundary condition is F~0as y—~=* «©,

To look for the worst mode, we minimize the
stabilizing effects. Wpgyr would be minimized if
k,p; is minimized subject to the physical con-
straints of the system. To minimize the trapped-
electron stabilization, we choose v> w, and g=0.
Next we note that when the ions are trapped, the
destabilizing effect due to the coupling to the lon-
gitudinal electric field is much reduced. We
therefore take the ions in the flute regime. To
lowest order in L,/Ly=€ <1, we obtain L ~3,

S~ -1, For a shear-free case, at marginal sta-
bility, Eq. (16) is reduced to

sz

+—(T6+cosy+€ cos2y)F =0. (17)

(o]
Here BO=€/q and B =8mp/B2 The two terms pro-
portional to € are due to effects not contained in
the ideal, single-fluid MHD theory. In particular,
they are due to the combined effect of the coupling
to the longitudinal electric field and the finite ion
Larmor radius. It is seen that the critical B is
reduced from that due to MHD by Bx/Bmip™=1/(1
+a€), a~1, For a present-day tokamak with €
~ L, the reduction could be = 10%.

The major differences between the MHD ap-
proach and the kinetic theory (KT) approach may
be summarized as follows. In MHD theory, the
frequency at marginal stability is zero, the per-
turbed electron and ion pressures are always
isotropic, and any coupling to the longitudinal
electric field is neglected. In KT, this mode ac-
quires a real frequency at half of the ion diamag-
netic frequency. This shift in frequency provides
a finite—Larmor-radius stabilization effect.'® The

The electron pressure anisotropy provides a sta-

’ bilizing effect, whereas the ion pressure anisot-

ropy is destabilizing. Depending on the toroidal
mode number %, the ion bounce frequency can be
either higher (trapped ion) or lower (flute ion)
than the mode frequency. In the flute-ion regime,
the destabilizing effect due to the ion pressure
anisotropy is larger than the stabilizing effect of
the electron pressure anisotropy. In the trapped-
ion regime, the stabilizing effect of the electrons
is larger. Further, the stabilizing effect of the
electrons may be nullified if the mode frequency
is much smaller than the trapped-electron col-
lision frequency. In KT, an important destabil-
izing effect also comes from the coupling to the
longitudinal electric field. In a real situation,
the worst mode is likely to be the one with the
lowest 8 threshold. This will occur at the long
wavelength end of the flute-ion regime, With the
effect of the coupling to longitudinal electric field
taken into account, the critical 8 could be up to
10% smaller than that predicted by the MHD the-
ory.

Equation (16) has been integrated numerically
from y = - to y =+ to find the marginal x =0
and the quantitative value of the critical B8 for
realistic toroidal equilibria (obtained by numer-
ical techniques). For instance, the critical By
for a possible JET (Joint European Tokamak) con-
figuration is around 11% lower than Bygmp. Sys-
tematic application of this theory is in progress
and will be reported separately.
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It is shown that the B phase not only has a “phase dynamics” such as that in He II, but
also an orbital dynamics somewhat similar to that of He-A or a nematic liquid cyrstal.
The rederived B-phase hydrodynamic theory, complete with nonlinear terms, establishes
the equivalence between rotations in orbital and spin spaces and shows the intriguing pos-
sibilities of generating a magnetization by mechanical rotations and of substituting the
magnetic field with oscillating parallel plates in “NMR” experiments.

The most exciting aspect of the two superfluid
phases of 3He is the richness of their spontane-
ously broken symmetries. The B phase, in par-
ticular, exhibits the rather subtle concept of spon-
taneously broken spin-orbit symmetry (SBSOS)
introduced by Leggett, which is a broken sym-
metry only of 7elative spin-orbit rotations.! In
previous studies of B-phase dynamics,*?® howev-
er, the consequences of SBSOS seem indistinguish-
able from those of the broken rotational symme-
try in spin space alone, such as that present in
an antiferromagnet or a spin glass. This is in-
deed disturbing because it defies the general be-
lief in the intimate relation between the spontane-
ously broken symmetry and the hydrodynamics of
a system. The discrepancy warrants the effort
to reinvestigate B-phase dynamics. One can
plausibly expect a system with SBSOS, in which
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the orbital variables are kept constant, to behave
as if only the rotational symmetry in spin space
were broken, and based on this argument, B-
phase spin dynamics has been successfully in-
vestigated.” But we can also turn the argument
around to conclude that keeping the spin variables
constant, the system has to account for the three
broken orbital symmetries (as would be present
in the hypothetical biaxial nematics), and its dy-
namics must therefore differ from the two-fluid
hydrodynamics of He II, where the only broken
symmetry is the gauge invariance. So qualitative-
ly speaking, B-phase dynamics will be given by
the combination of the spin-glass dynamics of
Halperin and Saslow* and superfluid biaxial ne-
matodynamics with a number of elastic coeffi-
cients vanishing to reflect the symmetry of the
Balian-Werthamer state, which is invariant un-

© 1978 The American Physical Society



