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dom rapidly. For a single ion, however, it will
be necessary to make all three principal axes of
the ellipsoidal potential well different and direct
the laser beam more or less along i + j+k.
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The He-Ne potential is obtained from the measured differential cross section by a sys-
tematic inversion procedure based on the generalized opitcal theorem. The potential,

0
obtained in the range from 2.1 to 6 A, is in good agreement with recently proposed model
potentials. The results constitute the first example of a fully direct and systematic in-
version of experimental scattering data of real systems.

Molecular-beam scattering experiments are
the source of some of the most accurate and de-
tailed information on intermolecular potentials. '
In most cases the extraction of the interaction
from the data is done by assuming an explicit
functional form for the potential that includes
free parameters. These quantities are then var-
ied in a trial-and-error procedure until the cross
section calculated from the potential yields a
good fit to the experimental data. ' It is, of
course, very desirable to replace this method by
a direct, systematic inversion procedure. It was
found by Buck' and Buck and Pauly' that part of
this task could be achieved by applying the Firsov'
semiclassical inversion, which generates the po-
tential from the deflection function (or phase
shifts). The deflection function itself is, however,
obtained from the cross section by a fitting pro-

cedure using a presupposed functional form. The
purpose of the present article is to demonstrate
that a complete inversion of scattering data is
possible for real systems. A key step in this pro-
cedure is the determination of the scattering am-
plitude, hence the phase shifts, from the experi-
mental cross section by the unitarity method. ' '
Though the method was tested for simulated and
idealized input data, the practical application was
hampered by the incomplete and inaccurate data
available. The advent of a new generation of
molecular-beam machines, however, made it
possible to obtain very precise data with high
angular and velocity resolution. ' The measured
differential cross section for the system He+ Ne
taken at the energy of E =64.4 meV (v=1927 m/s)
and transfomed to the center-of-mass system is
shown in Fig. 1(a). This system wa. s chosen be-
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FIG. 1. Differential cross sections for HeNe at E
= 64.4 meV in the center-of-mass system. (a) Compari-
son of measured and calculated values based on the po-
tential obtained by inversion. (b) Experimental and de-
convoluted cross sections.

cause the differential cross section exhibits only
a few diffraction oscillations typical for light
quantum systems. The data cover an angular
range from 3.7' to 112.1'. Since the inversion
procedure requires a complete range of angles,
the experimental cross section 0„is easily ex-
trapolated to small angles using the calculated
long-range part of the potential. " For large an-
gles, beyond the oscillatory regime, a„is a
smooth function which is extrapolated numerical-
ly to 180' using the known behavior of large-an-
gle scattering.

The next step is the deconvolution of 0'„, which
represents an average of the true cross section

!
0'(8) due to the finite resolution of the experimen-

tal setup. The experimental averaging is modeled
by two distribution functions over velocity and
angle variables with the half-widths of &v/v
= 10.7%%uo and 5 = 1.230', for a Gaussian in v and a
rectangular distribution function in ~, respective-
ly. " The algorithm used is a van Cittert itera-
tion procedure which is described in detail in
Bef. 11. To eliminate an amplification of artifi-
cial errors the cross section is fitted to a sum of
Gaussian peaks centered around the measured
positions of the oscillations. Since the input data
is not available for all energies over the limited
range of u values, it becomes necessary to as-
sume a scaling property for the cross section:
&(v, 8) =v &(& 8). Evidence for the validity of this
form was also given in Bef. 11. The constants,
estimated from measurements at two neighboring
collision energies, are n =0.961 and P = O.VV6.
In the present example, convergence to less 2%%uo

was found after eight iterations. Figure l(b)
shows the deconvoluted cross section v(v, 8) and
the experimental one &„(v,8). The extent of peak
quenching by the experimental averaging is quite
substantial. Deconvolution was successful in the
present case because the peaks of o „(v,8) are
well separated~ favorable condition for use of
this procedure. Finally we note that the techni-
cal step of deconvolution is the only part of the
inversion process where parametrized forms
are used (the scaling relation; Gaussian fitting).

To determine the scattering amplitude the uni-
tarity method 'can be used t.o calculate f (8) if
o (8) = lf (8) I2 is known for all 8 at fixed energy.
The method is based on the unitarity equation of
scattering theory. "" If one writes

f (8) =f (cos8) =g(cos8)e'"i"'@,

g(cos8) = [o (cos8)]"',

the unitarity equation assumes then the form"

g(cos8) sin[&(cos8)] = (h/4~) J, J, g(cos8")g(cos8')(cos[e (cos8")]—n (cos8')j sin8'd8'dy', (2)

where co%"= cos~ cos~ '+ sin~ sin~' cosset', and k

is the scattering wave number. In Befs. 7 and 8
conditions were established on the input g(cos8)
under which (2) can be itera. tively solved for o.(8)
[starting with no(8) = 0] and the solution is unique.
Tests with simulated cross sections, calculated
from realistic intermolecular potentials, have
shown, however, that these conditions are not
satisfied (at typical experimental energies). '
Straightforward iterations with o'o(8) =0 as zeroth-

order approximation are therefore excluded as a
method for solving (2). The difficulty can, how-
ever, be overcome (at least pra. ctically) by using
a combined iteration-extrapolation procedure and
starting from a physically reasonable zeroth-
order phase no(8).' Divergence was found to
arise from 0 regions where an n. th approximant
o.„(8), when substituted on the right-band side of
(2), yields a mathematically inconsistent value
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I sino.'„+,(&) l & 1 on the left-hand side. As remedy,
a modified procedure uses extrapolation to deter-
mine &„„(8)from the values at previous angles
in all regions where the right-hand side of (2) ex-
ceeds or approaches the magnitude g(0). The pro-
cedure followed in the present application is es-
sentially the same as that used in Ref. 6 for the
simulated examples. However, in the present
case a large number of iterations (28) were nec-
essary. Each iteration takes about 3.5 min on
the Hebrew University CDC 6400 computer. Con-
vergence could not be improved significantly be-
yond 3% (estimated by the difference between suc-
cessive approximants). To determine the phase
shifts one can apply the partial-wave decomposi-
tion of f(8), which yields

[exp(2', ) —1]/ik= f f ( g)F'&( cos9) sin8d8. (3)
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(3) was evaluated by a Gauss-Laguerre quadra-
ture for ~- 50. For larger values the known func-
tional formq& ——c~ " was used, "the constants c
and n being determined from the numerical g& for
46 ~ l 50. The partial-wave components from
(3), readily yield sin2g

&
and cos2q, but not the

absolute value of the q&, for which an ambiguity
of an nm term remains. We determine the cor-
rect n~ multiplicity by a simple process of analy-
tic continuation, using the fact that for a realistic
intermolecular potential q &

decreases monotoni-
cally as ~ decreases for q& values smaller than
the maximum value. In Fig. 2 the g& so extracted
are shown by circles.

The determination of the potential from the
phase shifts is done by the Firsov method'~' that
is known to be of good accuracy. We note, how-
ever, that quantum-mechanical inversion of the
phase shift is also possible, by the recently pro-
posed peeling method. " The result is shown in
Fig. 2. The potential exhibits a flat well with the
minimum values of & = 1.97 meV for the depth and
8 =2.97 A for the position. The zero is Ro=2.67
A. The inverted potential is in good agreement
with potentials proposed by semiempirical mod-
els" and a trial-and-error fitting of the same
data based on one of these models, ' the results of
which are also shown in Fig. 2." There are some
small deviations in the attractive part, but less
than 5% for e, 1.3%%uo for R, and 0.'l%%uo for R,. These
values are completely within the error limits to
which these values can be determined from the
present experiment [within (5-10)%%uo for e, (2-1)%%uo

for R„, and (1.0-0.5)%%uo for R,]. The deviations in
the repulsive part, if indeed significant, are re-
lated to the large-angle pa.rt of &„(8). To check

2

FIG. 2. Intermolecular potential V(B) vs the inter-
molecular distance (scale: left) and scattering phase
shifts g& vs angular momentum quantum number l
(scale: right) for the potential obtained by inversion
and the best-fit potential. Note the change in scale be-
tween the attractive and repulsive parts of the interac-
tion.

the consistency of the whole procedure the exper-
imental o „(9) is compared with the cross section
calculated from the inversion phase shifts and
averaged with the appropriate apparatus functions
given above. The result is shown in Fig. 1(a).
The agreement is quite good despite two small
deviations around the first minimum and 55'.
Whereas the first error is probably due to the
deconvolution process, the deviations at large
angles must be attributed to the unitarity part.
However, the overall result is obviously as good
as the best-fit procedures available at the mo-
ment. In addition this inversion procedure has
the great advantage of making no assumptions
about the special potential form.

The above results demonstrate that direct in-
version of scattering data can be a useful tool
for the determination of highly accurate atom-
atom potentials. It is quite conceivable that the
direct inversion scheme may offer deeper in-
sights on the sensitivity of the interaction, at
various ranges, to the input data. Inversion of
elastic scattering data may also stimulate further
progress in the inversion of inelastic scattering
data (e.g. , leading to the determination of non-
adiabatic interactions from cross sections for
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electronic transitions, "or the determination of
anisotropic molecule-atom potentials from rota-
tionally inelastic scattering data). Work in these
directions is already in progress.
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The drift velocity of electrons in helium gas at low temperatures is found to exhibit an
anomalous dependence on density, similar to that which has been observed at much higher
temperatures. The density and temperature dependence of the effect suggests that it
arises from multiple-scattering corrections to the classical transport behavior. The
effect may account for some of the phenomena which have previously been ascribed to
electron localization.

In their study of electron transport through
dense helium gas at 4.2 K, Levine and Sanders'
found that the electron mobility' p. drops several
orders of magnitude as the gas density n is varied
from about 5x10 to 1.5~10"atoms cm '. This
phenomenon has been universally interpreted as
reflecting a change in the characteristic state of
the electron from a free-particle —like wave func-
tion to the "bubble" state known to exist at liquid
helium densities. Other workers" have extended
the study of the mobility transition to higher tem-
peratures, and several theoretical models have
been proposed to account for the various observa-
tions. "' ' In all of this work the assumption
has been that at lower densities the transport
properties of the electron are characterized by

the simple Boltzmann equation, which yields'

where m is the electron mass and o is the mo-
mentum-transfer cross section in the limit of
zero electron energy. The mobility transition
has been viewed as arising from some new effect
having little physical connection with this pre-
sumably uninteresting transport problem.

In recent measurements' we have observed that
Eq. (1) does not in fact give a satisfactory de-
scription of the n dependence of p, at low densi-
ties. Rather, the product p. n is found to decrease
in an approximately linear fashion with increas-
ing n. A typical example of our results is shown

1978 The American Physical Society 239


