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We define coherent states for general potentials, requiring that they have the physically
interesting properties of the harmonic-oscillator coherent states. We exhibit these states
for several solvable examples and show that they obey a quantum approximation to the
classical motion.

The well-known' ' coherent states i&) for the
simple harmonic oscillator were originally ob-
tained by Schrodinger' as those quantum states
which obey the classical motion: (n ix(t) i o.)
=A sin(~t+ y). These states have a number of
other interesting properties including the follow-
ing: (1) They minimize the uncertainty relation
(bx)'(~)')R /4, and have bx =(8/2m')'i'.
(2) They are eigenstates of the destruction op-
erator: a i n) = o. i o.). (3) They are created
from the ground state by a unitary displacement
operator: (exp[ca' —a*a ]}i 0) =

i o.). These
properties are all equivalent. In fact, usually
one of them is adopted as the definition of the
harmonic-oscillator coherent states.

For systems other than the harmonic oscilla-
tor, definitions of coherent states have been pro-
posed based' on property (2) and' on property (3),
but have been applied to systems having equal
level spacing. In a general system the discrete
energy levels are not equally spaced, there may
be a continuous part of the spectrum, and the
problem may not be solvable in closed form. In
such cases these definitions are difficult to apply.
Moreover, they represent a departure from the
original motivation' for studying coherent states;
namely, that they obey the classical motion, We
seek a definition which retains this property and
which is generally applicable.

Consider a one-dimensional, single-particle,
quantum-mechanical system described by a local
potential with one confining region. Classically,
the bound-state motion is periodic and by a suit-
able mapping one can find a function X, (x) which
varies sinusoidally (as will its associated mo-
mentum P,= mX, ).

Specifically, if mx'= -d V(x)/dx, then X,(x)
=A sin(&u, t+ y) and P,=pX, '(x) obey

mx, =p„p,=-me, X„
where

(2)

and

Note that, in general, ~, and A depend upon the
total energy E.

The corresponding quantum-mechanical opera-
tors are (to within overall normalizations which
can be arranged for convenience)

-ikt d, , d'
X =—X P =— — — —X'+X'—

2
i Ch Chg

They obey

(4)

and

(~)2
( r P)2/( (X I )2 ) 2 ) 1g2

The states which minimize this uncertainty rela-
tion satisfy'

where a= —,'[(X)/AX+i(P)/~]. [For simplicity,
we have assumed that X, is independent of E. If
not, then to obtain X, one must make the replace-
ment E -H, add a possible zero-point energy,
and symmetrize. Such a more complicated X,(x,
E) occurs for the Morse potential, which system
will be discussed elsewhere. ]

We claim that a subset of these minimum-un-
certainty states, labeled by a particular value of
M'/~, are the appropriate generalization of the
harmonic-oscillator coherent states. We shall
now demonstrate that they obey the classical mo-
tion and suitably generalize other coherent-state
properties.

Equations (4) imply that X= -iS '[X,B]= P/m,
so that the first classical equation of motion (1)
is obeyed. The second of the classical equations
of motion (l) cannot be obeyed precisely because

is a superposition of energy eigenstates and in
general &u, depends upon E (the harmonic oscilla-
tor is exceptional in this regard). We shall dem-
onstrate in our examples, however, that if P,
= —(K,E+K,)X„ then quantum mechanically P

1978 The American Physical Society 207



VOLUME 41, NUMBER 4 PHYSICAl. RKVIK%" I.KTTKRS 24 JULY 1978

i—g '[-P, H]= ——,'(tL,H+K, +Z, X}, where Z is a
quantum correction and (, }denotes the anticom-
mutator. One obtains a quantum approximation
to the classical motion, with correct amplitude
and frequency, by specifying a particular value
for bX/~.

By construction the g (x) satisfy a generalized
version of property (1). They are also [see Eq.
(7)] eigenstates of the generalized annihilation
operator A [property (2)]. For the required
value of bX/ALP, A will turn out to be the ground-
state destruction operator, A, . In general this
relationship is not obvious, for the following rea-
son. For a general potential, in contrast to the
harmonic oscillator, the raising and lowering
operators A„' for the energy eigenstates E„de-
pend explicitly upon the state label n. Moreover,
it is not generally true that (A„)t=A„'. Never-
theless, it will turn out in our examples that the
"natural" position and momentum variables are
expressible in the form [iL(n) a c-number]

X = —,'IL(n)([A„+(A„') t]+ [A„'+(A„) ]},

P=—([A„-+(A„')']- [A„'+(A„-)t]},
and these operators do not depend explicitly upon
n. Equation (7) is therefore seen to be a general-
ization of property (2), with a = (2mk&u) '»'[m~
+ ip) replaced by A . The n dependence of A„'

makes the connection of our coherent states to
property (3) more difficult to establish.

Note also, that in principle our definition of
the coherent states can be implemented even for
systems which cannot be solved in closed form.
Equation (2) can be solved for X, by either analy-
tic or numerical approximation methods. Such a
solution then suffices for the calculation of X and
P via (4), and Eq. (7) can be solved for the co-
herent states ( (x).

We now summarize the results of applying our
method to several solvable examples.

(A) Harmonic oscillator For.—the case of the
harmonic oscillator, the natural variables are
the usual x and p, and our generalized coherent
states reduce, as already stated, precisely to
the familar coherent states, ' ' with M/bP = 1/
me.

(B) Symmetric Rosen Mors-e potential. It is-
convenient to add Uo to the usual Uo cosh ~ax and
deal with V(x) = U, tanh'z, z —= ax. Making the con-
venient choice y=0, the classical bound state

'solutions are X, = sinh z = [Ej(U, —E)]'»' sin&a, t,
where u, =[2a'(U, —E)/I]'»' and U, )E. For free
particles, U, &E, the circular functions become
hyperbolic functions. In either case, the equa-
tions of motion are X, = P, /m, P, = —2a'(Uo —E)X,

The quantum operators X = sinhz and P= —~isa'
x[coshz(d/dz)+(d/dz)coshz] obey [X,P]= i@a'
&cosh'z, and the normalized minimum-uncertain-
ty states are

(coshz) exp[C si '(ta h )]I" B 1 B+—'

where B= 2[ (cosh'z)/(bsinhz)'+ 1] and C = u+iv =B(sinhz)+ (coshz(d/dz)). One can verify that (9)
satisfies (7) and that (bX)'(~)'=~48'a'(cosh'z)'. The second equation of motion is p= —gjU, —B
X}, where Eo= a'h'/2m. These allow one to calculate X(t) exactly Aqua. ntum approximation to the
classical motion follows if B=s, where U, =E,s(s+1).

The normalized energy eigenfunctions' are [a(s —n) I'(2s —n+ 1) /F(n +I)]' '»P, " ')(tanhz). It fol-
lows that A„' =(s —n) sinhz+coshz(d/dz). Therefore, Eq. (8) yields X and P in agreement with
the forms obtained from X, and &, .

It is interesting to note that in the limit a -0, a s -mes/A, the potential, eigenfunctions, eigenvalues,
X, P, and the coherent states as defined here all approach their counterparts for the harmonic oscilla-
tor.

(C) Symmetric Poschl Teller poten-tial. —Here it is convenient to subtract U, =A(A. —1)E, from the
usual form Uocos 'z and deal with V(x) = Uotan'z, where z =ax. The problem is mathematica, lly simi-
lar to that for the Rosen-Morse potential (except that there is no continuum). The "natural" quantum
operators are X = sin z and P = —zika'[cos z(d jdz) + (d/dz) cosz ], which obey [X,P] = isa' cos'z. The
normalized minimum-uncertainty states are found to be

a I'(B+ —') I'(B+1) ' ' 1+sinz(cos z)' I'(B+ ~+u) I (B+ 2
—u) 1 —sin 8 (10)
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= 8 l (l+ I), and P=p„—= -i)a[(d/dr) +I/r] .The re-
sulting minimum-uncertainty states are

(2u) B+il2[ P(2B + I)]-I/2 +8- le - cr (I I)

with B =. s'(I/r')/[ b(1/r) ]', and C = u+iv = B(1/r)
—i(P)/k. One finds also that X and P are related
as in Eq. (8) to the operators A, ' which raise and
lower l for the radial eigenfunctions Ii„,(r). Here
the "ground-state" annihilation operator is A„,+,

which indicates that B=n for the coherent states. "
Further details and other results, including

numerical studies of the time evolution of our co-
herent states, will appear elsewhere.
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For the azimuthal portion of the problem, the opera-

where B= —,'[ —1+ (cos'z)/(~sinz)'], C =u+iv
= (cosz(d/dz))+B(sinz). Again, except for quan-
tum corrections, the second classical equation
of motion is obtained: P= —a'{U, +B ——,'Eo, Xj,
and one can claculate X(t) exactly. The classical
motion follows when B=A..

The normalized energy eigenfunctions' can be
expressed in terms of Legendre functions and the
raising and lowering operators are analogous to
those for case B. All of these results approach
those for the harmonic oscillator in the limit a
-0, ga'-nac/R.

(D) Infinite square well. —In the limit A. - I the
symmetric Poschl- Teller potential approaches
the infinite square well, with walls at +a = +v/2a.
Notice, however, that a minimum-uncertainty
state for the potential V(x) = Uou(ax) is also" a
minimum-uncertainty state for the potential Uo'

x u(ax). It follows that any minimum-uncertainty
state for a symmetric Poschl- Teller potential
is also a minimum-uncertainty state for the cor-
responding infinite square well (with d = v/2a).
In particular, even though any state in a flat well
has difficulty producing the classical motion,
Eq. (10), with B = 1, is a coherent state for the
infinite square well.

Observe that the first classical equation of mo-
tion for the Poschl- Teller potential becomes sin
(vx/2d) = sin&et. This is indeed a correct ex-
pression for the behavior of a classical particle
confined by rigid walls.

Finally, we briefly consider problems in three
dimensions. As in the one-dimensional case,
the coherent states should reproduce, as closely
as possible, the classical motion. We therefore
use the classical problem as a guide. A problem
which is separable, such as the three-dimension-
al harmonic oscillator, can be treated trivally by
analogy to the one-dimensional case. More gen-
erally, one must deal with non-Cartesian coordi-
nate systems.

In the following example, we limit ourselves to
a spherically symmetric potential and treat the
radial portion of the problem. " One must realize
that the natural angular variable is no longer the
time but a generalized variable y(t) which varies
between successive apsidal distances: y(t) = L/
me'(t).

(Z) Coulomb Potential. The classical Keple—r
solution is X, = (1/r —me'/I. ') =A sin y(t), where
A = [(m e4/L4) + (2mR/L2) ]~' P = (P„),= AL—
x cosy(t) and one has [me'/(2L')+E]= 2P, '/m
+ 2L'X, /m.

The quantum operators are I=X„with L'
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tors L,~ Eqs. (7) and (8) would lead to the "intelligent
spin states" of C. Aragone, G. Guerri, S. Salamo, and
J. L. grani, J. Phys. A 7, L149 (1974); C. Aragone,
E. Chalbaud, and S. Salamo, J. Math. Phys. (N.Y.) 17,
196' (1976).

Observe that in the special case ImC=0, our coher-
ent states include the circular-motion "classical wave

packets" which L. S. Brown, Am. J. Phys. 41, 525
(1978), obtained on physical grounds, for the large-n
case. Also see J. Mostowski, Lett. Math. Phys. 2, 1
(1977), who, using the Perelomov formulation, has ob-
tained wave packets which, for the case of circular mo-
tion, are "similar to the wave packets discussed by
Brown. "
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Recently, anomalous production of dimuons with m & 600 MeV has been reported in
16-GeV/c n p collisions. Production and subsequent decay of the tensor mesons f and
A2 is suggested as a source for these dimuons.

Dilepton production in hadronic collisions is
currently of considerable interest. At invariant
masses greater than 1 GeV there are narrow
resonances superimposed on a steeply falling
continuum. The continuum is understood in terms
of the parton-antiparton annihilation process pro-
posed by Drell and Yan' and the resonances are
taken as evidence of new quark flavors. However,
a recent investigation' of low-mass dimuons pro-
duced in & p collisions at 16 GVe/c has found
dimuon production which does not easily fit into
this scheme. The p and & resonances are clearly
seen, but below the p mass there remain contri-
butions in addition to the known Dalitz decays.

In order to show what signal remains to be ex-
plained, known contributions are subtracted from
the histogram of Bunnell et al.' in the following
way: (i) Their expected (rather than their maxi-
mum) Dalitz-decay signal is subtracted, and
(ii) except for two events per bin all events be-
tween 0.62 and 0.89 GeV are assigned to the vec-
tor mesons. Two events per bin is the average
number found in bins immediately to either side
of the resonances. Fourteen events in the bin
centered on 0.785 GeV are assigned to , this
number being chosen to give a smooth p peak.
The rest of the resonance events are assigned to
P.

The original data suggest that the p, and & mes-
ons are superimposed upon a smoothly falling
background. However, when the Dalitz contribu-
tion, which is surely present even if not in pre-
cisely the amounts I have assumed, is subtracted,
what remains invites the following interpretation:

There is a flat continuum from threshold to a
sharp cutoff around 0.55 GeV, superimposed on a
slowly varying background of about two events per
bin. The statistics are such that the 0.55-GeV
dip may be a fluctuation, but the data are at least
consistent with the interpretation suggested and
I wish to propose a mechanism which accounts
for this shape. It is difficult to obtain the re-
quired smoothly falling spectrum. In particular,
simple quark counting arguments imply for a
Drell- Yan mechanism

p~p pX
n'p- p'p, X

(see for example Donnachie and I andshoff') where-
as the observed ratio' is 1.28~ 0.23.

Given a flat distribution with a sharp cutoff,
what is required is a decay of the form h -h'p p, ,
where h and h' are hadrons with

~ =MI, -Ply, .=0.55 GeV.

The Dalitz decays of g and have this feature,
but being p-wave decays their spectra near the
upper threshold (where the dimuon invariant mass
is m (~) are proportional to (AM-rn)' '. A
sharp cutoff requires an s-wave decay (electric
dipole) with (rdd-rn)' ' threshold behavior. I
propose that the most important candidates are

I: A,o-p p. , ~q -—0.53 GeV,

II: f-p'y. 'p, , AM11 =0.50 GeV.

This proposal is tested in two stages, by first
checking that the spectra obtained have the right
shape, particularly in respect of the position of
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