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A simple proof is given of a general result which shows how to construct solutions of a
coupled system of linear self-adjoint partial differential equations once one has succeed-
ed in deriving a decoupled equation in the manner described below. In the case of elec-
tromagnetic and gravitational perturbations of algebraically special vacuum space-times,
this procedure yields the formulas of Cohen and Kegeles and of Chrzanowski.

In general relativity, as in most other branches
of physics, one is often faced with the task of
solving a coupled system of linear partial differ-
ential equations. The equations describing the
propagation of small electromagnetic or gravita-
tional disturbances in a space-time are prime
examples of such systems. Much effort has been
devoted to solving these equations, but except in
the simplest cases (such as Robertson-Walker or
Schwarzschild space-times) direct attacks on the
full system of equations generally have not been
successful.

In several cases, however, it has been possible
to derive from the original system a decoupled
equation for a new variable. The most important
example of this is the case of algebraically spe-
cial vacuum space-times, where, by the method
of Teukolsky, ' one can derive from the electro-
magnetic perturbation equations a decoupled equa-
tion for the Newman-Penrose' component y, of
the Maxwell field, and from the gravitational per-
turbation equations, one can obtain a decoupled
equation for the Newman-Penrose component p,
of the perturbed %eyl tensor. In the case of a
Kerr black hole (which is a type-D solution, so
that additional decoupled equations for y, and g,
can also be derived), these equations can be
solved by separation of variables. Furthermore,

many physically interesting quantities (such as
the ingoing or outgoing radiation fluxes) can be
calculated directly from the decoupled quantities,
and so the solution of many physical problems can
be obtained by this means. However, for some
problems, one needs to know the complete elec-
tromagnetic or gravitational perturbation. For
the Kerr metric, Chandrasekhar' recently has
succeeded in systematically solving the complete
gravitational perturbation equations, but the prob-
lem remains for other space-times.

Progress toward obtaining the complete pertur-
bations for vacuum algebraically special space-
times has been made by Cohen and Kegeles4 ' and
Chrzanowski. ' In the electromagnetic case, Coh-
en and Kegeles' obtained an equation for a poten-
tial gz from which solutions of the full Maxwell
equations can be generated by differentiation.
Making the conjecture that the Green's function
for the full electromagnetic and gravitational per-
turbations of Kerr could be expressed in a certain
factorized form, Chrzanowski' derived formulas
for the vector-potential and metric perturbations
of Kerr. In the electromagnetic case his construc-
tion is equivalent to that of Cohen and Kegeles. '
On the basis of this analogy, Chrzanowski con-
jectured a formula —subsequently also given (with-
out derivation) by Cohen and Kegeles' —for the
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m etric perturbation of an arbitrary vacuum alge-
braically special space-time in terms of the solu-
tions of an equation for a potential g~. Both the
Cohen and Kegeles derivation for electromagnet-
ic perturbations and the Chrzanowski derivation
for Kerr are rather complicated and rely on spe-
cific properties of (and, in Chrzanowski's case,
unproven assumptions about) the particular sys-
tem of equations under consideration.

In this Letter, I shall give a remarkably sim-
ple proof of a completely general result which
states that, whenever a decoupled equation can
be derived from a system of linear, partial dif-
ferential equations in the manner specified below,
then a solution of the adjoint equation to the de-
coupled equation generates (by direct differentia-
tion) a solution of the system of equations adjoint
to the original system (and thus a solution of the
original system in the self-adjoint case). For
electromagnetic and gravitational perturbations
of vacuum, algebraically special space-times,
this result yields the formulas of Cohen and Ke-
geles and Chrzanowski.

Let M be a smooth (C") manifold with smooth
metric g„„and derivative operator V„associated
with the metric. The presence of the metric is
purely for convenience; with a suitable redefini-
tion of adjoint the theorem proven below remains
valid for an arbitrary derivative operator. Simi-

larly, the smoothness assumptions can be weak-
ened. I wish to consider linear partial differen-
tial operators on M, mapping n-index smooth ten-
sor fields into m-index tensor fields. By a "lin-
ear partial differential operator" I mean precise-
ly an operator which can be expressed as a finite
sum of smooth tensor fields contracted with the
derivative operator V„. I shall denote such oper-
ators by script capital, letters. Again, the results
below can easily be generalized to encompass
operators which map collections of tensor fields
into collections of tensor fields (as one would
need to consider, for example, when treating the
coupled Einstein-Maxwell perturbations of elec-
trovac space-times with a nonzero background
electromagnetic field).

Suppose we wish to solve the equation

[ $@(A~)]p = V"V„A~ —V"V~A„, (2)

and the linearized Einstein operator describing
gravitational perturbations of vacuum space-
times,

where h is a linear partial differential operator
and f is a tensor field of the type on which h acts.
Prime examples of h in general relativity are the
Maxwell operator describing electromagnetic per-
turbations,

[ho(hp~)]~„———VpVph ~- V "V~h~p+ V "V„h p+ V~V~h~„+@~„(V~V h~g —V V h~s).

Suppose a decoupled equation has been derived
in the following manner: A new variable q = E(f)
(where 9' is a linear partial differential operator)
has been introduced and a linear partial differen-
tial operator I has been found such that for all f,

where 5 is yet another linear partial differential
operator. The equation gf) = 0 then implies the
"decoupled equation" 6(q) = 0.

To make the above statements more concrete,
consider the example mentioned above of electro-
magnetic perturbations of vacuum, algebraically
special space-times. The new variable y is
chosen to be the Newman-Penrose component y,
of the Maxwell field and the operator-T~ is the
formula for y, in terms of Aq,

! are Newman-Penrose tetrad vectors with l"
aligned along the repeated principal null direction.
The operator S~ describes the manipulations that
must be performed on the Maxwell equations to
derive the Teukolsky equation. It can be read off
from the source term of the inhomogeneous Teuk-
olsky equation" and, in Newman-Penrose nota-
tion, is given by

28~(JL) =(0 —p —o. —2m+ n)(J„/")

—(D —e+ e —2p —p)(J„m").

Teukolsky's derivation' shows that the operator
identity

r~(A), ) = l"m "(Vg„-V„A „),
where, following standard conventions, l& and m" holds, where 6~ is the Teukolsky operator, de-

204



VOLUME 41, NUMBER 4 PHYSICAL REVIEW LETTERS 24 JUr.v 1978

fined by

8z(y) =(D —c+ e- 2P —P)(b, + P —2y)P

—(6 —P —n 2—v + mg(F+ w - 2o. )cp. (8)

The equation 8~ /~= 0 is then recognized as pre-
cisely the Cohen-Kegeles equation (4). The above
theorem proves that if gz is a solution of the
Cohen-Kegeles equation, then

(9)

Z ~ is called the adjoint of Z. The generalization
of this notion to an operator 4' taking n-index ten-
sor fields to m-index tensor fields is straightfor-
ward. The adjoint, (P, of (P takes m-index tensor
fields into n-index tensor fields and is defined by

As with scalar operators, the composition of ten-
for operators (P and Z satisfied (6'Z)t= &~6'~. We
say (P is self-adjoint if 6'~ = (P (which is possible,
of course, only if m =n). It is easy to check that
the operators h~ and hG given by Eqs. (2) and (3)
are self-adj oint.

I now shall prove the following result:
Theorem. —Suppose the identity S8=6 v'holds

for the linear partial differential operators S, h,

8, and &. Suppose g satisfies 8~(=0. Then S~g
satisfies $~(S~() =0. Thus, in particular, if Sis
self-adjoint then S~) is a solution of S(f) = 0.

Proof.—Taking the adjoint of Sh= 61' we have

Applying these operators to p, we obtain

gt Sly 0 (12)

which is the desired result.
As an application of this result, consider elec-

tromagnetic perturbations of vacuum, algebraical-
ly special space-times. The adjoint of 6~ is eas-
ily computed to be

8z~ = (&+P+y y)(D+2e+p)-
—(5 + n +P —~)(6 + 2P + ~).

Exactly similar relations hold for gravitational
perturbations. '

Before stating the main result, I need to intro-
duce the notion of adjoints. As most readers un-
doubtedly know, for a linear partial differential
operator Z taking scalar fields into scalar fields,
it is always possible (because of the l,eibnitz prop-
erty of the derivative operator V„) to express uni-
quely the product g(Zy), where cp and g are scalar
fields, as the product of y with a derivative opera-
tor g~ acting on g, plus a total divergence:

$~(5+2p+v)gz+m" (D+2e+p)(z, (14)

is a vector-potential solution of Maxwell's equa-
tion. Equation (14) is precisely the complex con-
jugate of Chrzanowski's' Eq. (6.7). [Real solu-
tions are obtained by taking the real and imagi-
nary parts of (14), and so (14) is, of course, com-
pletely equivalent to Chrzanowski's result. ] Dif-
ferentiation of the real part of Eq. (14) to obtain
the Marvell field tensor components yields the
Cohen and Kegeles' formulas. [The imaginary
part of Eq. (14) yields the duality-rotated solu-
tion. ]

In an entirely similar manner, for gravitation-
al perturbations of vacuum, algebraically special
space-times the adjoint equation 8~~/~=0 for
the Teukolsky operator 6~ is just Chrzanowski's
Eq. (6.11) which is the same as Eq. (5) of Cohen
and Kegeles. ' (Note that Chrzanowski's rather
unnatural procedure for obtaining this equation is
equivalent to simply taking the adjoint. ) Applica-
tion of Q~~ yields the complex conjugate of Chrz-
anowski's' Eq. (6.13) [Cohen-Kegeles's' Eq. (6)]
for the metric perturbation in terms of g~. [Note,
however, that the Cohen-Kegeles formulas for
the Newman-Penrose Weyl tensor components
are somewhat misleading since they do not take
the real part of the metric perturbation before
calculating these components. Hence, these com-
ponents do not necessarily arise from a real
metric perturbation. Formulas for P, and g~ for
real metric perturbations in the type-D case are
given below in Eqs. (17) and (18).] Thus, the re-
sults of Cohen and Kegeles and Chrzanovrski can
be derived in a very simple manner as special
cases of the above theorem. Further applications
@rill be given elsewhere.

It is interesting to note that if p satisfies 6 g
=0 then, as proven above, S~S~$=0, and hence,
if 8 is self-adjoint, O=SSS~$=8(KS~g). Thus, if
h is self-adjoint the operator KSi maps solutions
of the adjoint equation 8~/ =0 into solutions of
the equation 6cp = 0. In the case of electromagnet-
ic perturbations of vacuum type-D space-times,
it turns out that the Teukolsky equation for cp,
implies that the quantity (g,') "'y, satisfies the
adjoint of the Teukolsky equation for y„where
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y, = 4r (Re Ss tq s) = - (D+ ~ - s - p)(D+ 2 e+ p) ys

is a solution of Teukolsky's equation for P„where &s and Ss are given by Eqs. (5) and (14) above,
and Re denotes the operation of taking the real part. The field tensor component y, associated with

the real vector potential solution generating y, via Eq. (15) is not the original solution ((,')@'ys, but

rather

(15)

y
o is the ~ey] tensor component g2 of the unperturbed space-time. Thus, if cps is a solution of Teukol.

sky's equation for ((,0) + p„ then the quantity

p, = 4r, '(Ress' p, ) = —(5 - v+ n + p3(5+ 2|I+ 3~ p, . (16)

In an exactly similar manner, for gravitational perturbations of vacuum type-D space-times, g, and

(g, ') 'I'g, satisfy adjoint equations. Here we find that if (G is a solution of the Teukolsky equation for
(g,') ' 'g, then

g, = 4E o(Re So g~) = (D —p —3 e+ ge(D —p —2 e+ 27)(D —p+ 3 e —e)(D+ 3p+ 4~) go (17)

is a solution of the Teukolsky equation for g, where Eqs. (6.13) and (B11)of Ref. 6 have been used. The
solution for g, associated with this solution for g, is

g, = (5 - 7+ 3n+ P)(6 —~+ 2n+ 2P)(&+ n+ 3P —~)(5+ 4P+ 3V)go

+ f(5 —F+ 3n+ P)(5- 7'+ 2n+ 2P)(5+ n+ 3P- 7)(5+4P+ 3v)

+(a+ p+ 3y- y)(b. + p+ 2y —2y)(D —p+3m —~)(D+3p+4~)

—[(a+ p+ 3y- y)(5 —2F+ 2n)+ (5 —7+ 3n+ p)(A+ 2p, + 2y)]

&& [(D+P —P+ E+ 36)(5+ 4P+ 37) (+5+ 3P —n —w —7)(D+ 3P+ 4E')j)$o. (16)

Equations (15)-(18)are the electromagnetic and

gravitational Starobinsky-Teukolsky relations"
for perturbations of an arbitrary vacuum type-B
space-time. For the Kerr metric they may be
simplified (by manipulations along the lines of Ap-
pendix C of Ref. 6) to yield relations between the
radial and angular solutions for y, and p, and for
g, and g, although I have not completed the reduc-
tion of Eq. (18), which evidently requires consid-
erable algebra.

Finally, it is worth noting that Chrzanowski de-
rived his results by postulating a faetorized form
of the Green's function for electromagnetic and

gravitational perturbations of Kerr. Now that his
final results are rigorously established, one may
reverse the steps of Chrzanowski's argument
(taking into account the known factorized form of
the Green's function for the Teukolsky equation)
to prove that his assumed factorized form of the
Green's function for radiative modes of the com-
plete electromagnetic and gravitational perturba-
tions is indeed valid.
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