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Classical Diffusion in One-Dimensional Disordered Lattice
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Classical diffusion of localized excitations is investigated on a one-dimensional chain
with (energy-independent) nearest-neighbor transfer rates p'„„+~=@'„+«that are inde-
pendently distributed according to a probability density p(g ). An exact formal solution is
derived for (PD(t)), the time development of the initial excitation. The long-time decay of
(Po(t)), determined by the behavior of p(~) near W —-0, is analyzed in detail for arbitrary
probability densities p (p').

Based on classical rate equations, we investi-
gate the diffusion of localized excitations (or
particles) in one-dimensional disordered sys-
tems. Specifically, we consider an infinite one-
dimensional lattice with only nearest-neighbor
transfer rates W„„+,= W„„„that are distributed
(independently) according to a probability density
p(W). At time t=0 a single site is excited,
P„(t= 0) = 5„„, and the excitation amplitude P„at
the nth site develops according to

The purpose of this Letter is to calculate the
long-time development of the initial excitation,
(P,(t)), and to establish its dependence on the
functional form of the probability density p(W).
The avera. ge ( ~ ~ ~ ) is defined with respect to the
distribution of the (independent) random variables
W„„+,.

Our problem is relevant to the study of trans-
port properties in a number of different physical
systems. It is particularly appropriate to fluores-
cent-line-narrowing experiments. ' An inhomo-
geneously broadened optical line is subjected to
a narrow laser pulse, and the subsequent time
development of the emission profile is governed
by phonon-assisted energy transfer between sites
with different excitation energies (spectral diffu-
sion). The above model corresponds to a situa-
tion where the site-site transfer rates are energy-
mismatch independent, and the emission ampli-
tude of those sites initially excited is then rep-

resented by (P,(t)).'
The quantity (P,(t)) is also related to the dif-

fusibility of a particle in a disordered one-di-
mensional lattice. It represents the probability
of finding the particle after time t at its initial
position. Further, (P,(t) ) is the Laplace trans-
form of the energy-eigenvalue density of states
N(e). Our long-time results for (P,(t)) therefore
determine the low-energy behavior of N(e) for
systems which are described by eigenvalue equa-
tions analogous to those generated by Eq. (I)'.
lattice vibrations of a linear chain with random
force constants, electronic impurity bands in
one dimension, and low-temperature excitations
of random one-dimensional ferromagnets.

An exact formal solution for (P,(t)) can be
derived for the type of one-dimensional systems
defined above. If P,((o) denotes the Laplace trans-
form of P,(f), we obtain

&P.(~))=fdg dg, f (g,)f.(g.)
CO+gi+ g~

where f„(g) denotes the probability density of the
following infinite continued fractions:
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W C0+--
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+ ~ ~ ~
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As the W„„+,are independent random variables,
we can construct an exact integral equation for
f (g), with (o real:

dgjf (gi) g @(o g(g +~)
g+N —g g+(d —g

notice that the support of f is (g~g) Oj. The solution of Eq. (4) determines (P,((o)) for real &o,
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and (Po(t)) is given by the inverse Laplace trans-
form of its analytic continuation into the right
half -plane.

In the following we concentrate on the long-time
behavior of (P,(t) &. It is well known that in the
ordered system, i.e. , for p(W) = 5(W- W,), (P,(t) &

shows the usual diffusive behavior,

(P (t)&=(4~W)- 't-" (5)

In a previous paper, ' we have calculated (P,(t) &

for the case when p(W) contains a 5 function at
W=O. This corresponds to a chain with random
interruptions, a problem examined in different
contexts by a number of authors. ' We found' that
in the limit of very long times (Po(t)) decays
exponentially to a constant value I' &0, so that

(P,(t)) —P„-exp(-t' ') .
This is a consequence of the localization of the
ex.citations on segments of finite length.

From now on we exclude probability densities
p(W) which contain a 6 function at W= 0, so that
(Po(t) & will eventually decay to zero. We shall
see, however, that the decay can be much slower
than given by the diffusion result of Eq. (5). To
calculate the long-time behavior of (Po(t)& we
have to determine the behavior of (Po(cu) & for
small real u. A careful investigation of the inte-
gral Eq. (4) shows that for small &u, f (g) can be
approximated by a 6 function, so that

f (g) as &u decreases .
Iff (g) is replaced by a 5 function, Eq. (7), it

follows that go(w) is given by

go= dWP W —+ (9)

&P (t)&=(4~W )-"t-" (10)

(b) If p(W) is finite at W=O, we have g, -(—~/
In(d) as 4) 0, and

&P,(t) &-(»t/t)' ', t-
(c) If p(W) diverges as W "for W-O, g, be-

For very narrow distributions f (g), the average
value of g, (g)= Jdggf (g), is accurately approx-
imated by g,. We have calculated (g& numerically
for various p(W) by, using Monte Carlo methods
to generate high-order continued fractions of the
type of Eq. (3). Figure 2 shows that the agree-
ment between the numerical results and the pre-
dictions of Eq. (9) is excellent. From the small-
y behavior of (P,(~)&, as determined by Eqs. (2),
(7), and (9), we can distinguish the following
categories of probability densities p(W) which
lead to qualitatively different results for the long-
time decay of (P,(t)&:

(a) If p(W) is such that 1/W, ~f= JdW p(W)/W
exists, we obtain g, =(W,~w)'t' as u-0, and
(P,(t)) therefore follows the one-dimensional dif-
fusion result,

f ( g) 5(g-go(~))

for all p(W) that do not contain a 5 function at W
=0, The relative error introduced in averages,
e.g. , of the form of Eq. (2), vanishes as ur -0.
Although at the moment our estimations of the
corresponding corrections are not yet entirely
rigorous, ' we believe that our results are exact
in the limit as &u -0 (or t - ~). They are further-
more very accurately confirmed by numerical
calculations, as discussed below. The full details
of our investigations will be published elsewhere.

We were able to construct a simple iteration
scheme to solve Eq. (4) numerically. The proce-
dure works very well if f (g) is essentially con-
centrated on a bounded support and could'be ap-
plied to equations of a similar type (e.g. , those
of Dyson'). Figure 1 shows results for a uniform
distribution of W's,

I, O-W-I,
p(W) =

0, otherwise,

and demonstrates qualitatively the narrowing of
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FIG. j.. Results of a numerical solution of Eq. {4)
for the uniform probability density of Eq. {8).
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FIG. 2. (g), the average value of g [Eq. (8)] for three
different distributions of g s: (a) g uniformly dis«i-
buted in +2-p™2; (b) ~ uniformly distributed in 0-~
-1; (c) p(W) =25 for 0-g -1. Monte Carlo results
(circles) are compared with the predictions go = (g) of
Eq. (9) (full curves).

the analysis of low-temperature specific-heat
measurements in one-dimensional systems with
random site-site couplings. " It is not clear
whether we may expect similar results in higher
dimensions. The recent investigations of Anton-
iou and Economou" seem to exclude the occur-
rence of some sort of quasilocalization as we
pass from ordinary diffusive behavior to true
localization (in percolation systems).
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haves asymptotically as go
—~' ', and

(12)

In conclusion, we have investigated in detail a
simple one-dimensional model for spectral diffu-
sion in disordered systems. We have shown how
the long-time decay of the initial excitation is
determined by the distribution of transfer rates,
p(W). Depending on the form of p(W) near W = 0
we can distinguish four categories with qualita-
tively different long-time behavior. Compared
with the ordinary diffusion result, Eq. (10), the
long-time decay becomes slower and slower as
the fraction of very small transfer rates increas-
es. Corresponding to Eels. (11) and (12) we may
speak of weak and strong quasilocalization of the
excitations. Systems with distributions p( W) that
contain a 6 function at O'= 0 have to be studied by
different methods. ' Here we have true localiza-
tion of the excitations, and the initial excitation
decays exponentially to an enhanced constant value
as t-~ (see Ref. 5). These conclusions supple-
ment the results of Theodorou and Cohen' con-
cerning the localization of eigenstates in one-
dimensional systems with off-diagonal disorder.

Our very general results for (P,(t)) may be of
direct use in fluorescent-line-narrowing experi-
ments, and (via the energy density of states) for
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