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The agreement between the predicted and meas-
ured results is excellent. For A1-Ag where I'„,/
F„=l,Eqs. (6) and (7) are formally equivalent;
the fitting of the data would not be significantly
altered if the Ag layers were the main sources
of new dislocations.

In conclusion, it has been established that the
observed strength enhancement in thin-layered
Al-Cu and Al-Ag laminates is caused by the re-
pulsive dislocation-image forces described by
Koehler. ' The laminate systems investigated con-
sisted of polycrystalline layers with nearly ran-
dom grain orientations, and consequently the in-
dividual layers present rather complex three-di-
mensional slip systems. The calculated results
are therefore approximate for they do not include
the rigorous angular dependences of the forces
acting in the possible glide planes.
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Two-loop calculations indicate that the order parameter in liquid helium at the A, point
may relax by an order of magnitude more slowly than the entropy. Consequently the cri-
tical region for entropy relaxation is expanded by an order of magnitude, both above and
below the A. point, which may help to reconcile light-scattering data, second-sound damp-
ing, and dynamic scaling theory. Characteristic double-humped spectra are calculated,
providing a crucial test of the present theory.

From general considerations a dynamic scaling
theory" has been advanced in which it has been
argued that the breadth of the spectrum of en-
tropy fluctuations at the ~ point in liquid helium
scales with wave number k according to

v, (k) =ak' '. (&)

Equation (l) has subsequently been confirmed by
both the mode-coupling' and dynamic renormali-
zation-group theories. ' The value of the con-

stant a which is obtained from these theories
compares satisfactorily with the value deter-
mined experimentally from light scattering by
Winterling, Holmes, and Qreytak, ' Vinen et al. ,

'
and Tarvin, tidal, and Greytak. ' The tempera-
ture dependence predicted by dynamic scaling
has, however, been found to be in gross contra-
diction with the experimental observations. In
this note we offer an explanation of this discre-
pancy and show how dynamic scaling theory can
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% =p+p ~ (4)

Thus it is important to bear in mind that the dy-
namics of an entropy fluctuation at momentum k
are not directly determined by k, but instead by
the range of values of the momenta P and P'.
Normally the values of P and P' that contribute
most heavily to a convolution such as that of Eq.
(3) would be expected to be of the order of k. Our
basic point is that this is probably not true in the
present case. We pursue here the consequences
that ensue from the possiblity that the important
momenta in Eq. (3) are in the range p =p'»k.
This situation can arise when the frequency width
of the order-parameter fluctuation spectrum ~&(k)
«e, (k). It is convenient to write

&u&(k) =a&&a, (k),

where the dimensionless ratio a& is a small num-
ber. Because of the unobservability of ~&(k)
there is no direct experimental indication of the
smallness of 0&. An indication from theory, how-
ever, is the observation of De Dominicis and
Peliti in two-loop order that an instability may
occur in which 0~ vanishes. The stability ques-
tion has been studied in detail ' by Dohm and
Ferrell and in a slightly different way by Ferrell
and Bhattacharjee. " In both of these treatments
small, positive values of O(10 ') are found for v&.
Therefore it seems appropriate and worthwhile
to explore here the consequences ensuing from
the assumption

g~&C ] .
The improved agreement with experiment that
we will achieve serves to indicate the correct-
ness of Eq. (6).

(6)

be modified so as to bring it into agreement with
experiment for liquid helium.

The entropy current is a consequence of the
fluctuation in the complex order parameter g
= g, + iP, and is given by an expression of the
usual quantum mechanical form

J~ —,'i (—/*V( —/VS*).

From the continuity equation, the rate of change
of the entropy density 8 is proportional to the
divergence of Eq. (2). Consequently the rate of
change of the Fourier component associated with
wave number, or "momentum, "k, is

s„Z(p'- p")g, (p)p, (p') (3
PsP

with the sum restricted by momentum conserva-
tion

This is our main result and shows that effectively
the correlation length controlling the dynamics is
increased by the factor o~

' '. Therefore Qe
temperature width of the dynamic critical region
is expanded by 0~

' or roughly one order of mag-
nitude, according to the theoretical &-expansion
estimates cited above.

In order to demonstrate in detail how the above
ideas work out, we examine now some of the
properties of the entropy self-energy, ys(k, &),
and in particular, its dependence on frequency

We first limit ourselves to the ~ point where
~=0. It suffices to recall that in every order of
perturbation theory (i.e. , arbitrary number of

loops) dimensional arguments yield for y s(k, 0)
the k dependence k' times k ' '. The latter factor
comes essentially from cutting off the P integrals
at p ) k. On the other hand, at finite frequency,
an additional term —iw occurs in the denomina-
tors of the integrals for ys(k, &). For sufficient-
ly large & the integrals are therefore frequency
cut off and instead of being proportional to k '~2

they are proportional to (- i&@)
' '. These two

limiting cases are expressed, respectively, by

k-i/2

ys(k (u) ~k'
(

.
)
|t,

(1Oa)

(lob)

Let us consider the limiting case 0&
——0. Then

the entire spectrum falls in the "high-frequency"
range, and Eq. (10b) applies throughout. By in-
troducing the dimensionless frequency

0 = (d/N ~ (k)

For the sake of simplicity we first describe
qualitatively the consequences of Eq. (6). As we
shall discuss more explicitly below, an order-
parameter fluctuation of momentum p only con-
tributes effectively to the momentum-k entropy
fluctuation when its frequency matches that of the
latter. Therefore we determine the important
range of p by requiring

~~(p) =~.(k)

Substitution from Eqs. (6) and (1) then yields

p =a, "k.
Applying now the basic dynamic scaling idea to
p instead of to k, we see that we should not ex-
pect to observe a temperature effect in the spec-
trum of S~ until the inverse correlation length
attains the value ~=P ~ According to Eq. (8) this
can be expressed as ~=k, where

v =cr 2~3m.
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we can write Eq. (10b) in the form

y, =(u, (—sn) '/' (i2)

This relates the coefficient a of Eq. (1) to the
proportionality constant in Eq. (lob). Substitu-
tion of Eq. (12) gives us now the entropy Green's
function

g ~(k, (u) = 1/[ —i(u + y, (k, (u) ]

=&a, '/[ —in+( —in) '/']. (13)

The sum rule

v3 n'/'
2 n"'-n"'+i' (14)

J Re g (k, (d)d(d = 77

can be confirmed explicitly by
Eq. (14). The spectrum of Eq.
non-Lorentzian. Its vanishing

substitution from
(14) is strongly

!
at & = 0 is a conse-

The spectral function, which is to be compared
with the intensity of the light scattered at frequen-
cy shift &, is

quence of the limit 0&
——0. The central valley be-

gins to fill in and becomes O(o&'/') as &x& takes on
a small positive value. But for 0& «1 this is a
minor effect which leaves the wings of the spec-
trum essentially unchanged. Therefore we pass
on to the more interesting question of the changes
produced in the spectrum by finite values of K.

We now carry out the single-loop convolution
integral corresponding to the "decoupled-mode"
version" of mode-coupling. ' We have also deter-
mined the shape function to O(e),

' but here we
report on our results for the three-dimensional
integral. We assume that the dependence of the
order-parameter relaxation rate on p and « is
given by o~a(p'+ K')'/4. As will be shown else-
where, the somewhat more complicated form de-
termined self-consistently in Ref. 14 leads to sub-
stantially the same results. For K»k the domi-
nant contribution comes from the momentum
range p»k. This results in a high-momentum
simplification of the convolution integral. All
angular dependenees then disappear, leaving only
the radial integration

33/2~o 2/3 ao [p2/( p2 «2) ]2 k 1/2 33/2 f in k 3/2)
y,(k, K, ~)=u), k' 2"' @ '

2 ' ' "'' ~' 2'77 p -ljO+ +pQ(P + K j K
(i6)

where
00 1

I(z) =
z + (p'+ 1)~/4 (i7)

! Equations (16) and (19) suggest a convenient ap-
proximation to I(Z), which when substituted into
Eq. (17) becomes

I(Z) - (Z+ ~'/') 'dn=(4v/3v3)Z '/3'
0

On the other hand, in the range ! Z! «1,
I(z) =I(o)[i+zI (o)/I(o)]

= I(0)[1 ——
(—in/o) ], (i9)

where

2 I(0) K '/' 20 1"(-,') K
' '

3 I'(0) k 21 I'(-;) k
(2o)

= &.0(K/k)' '.

Here we have introduced the dimensionless mo-
mentum v =p/«. Equation (16) has been normal-
ized so as to reduce to Eq. (12) in the limit «/k
-0. In other words, because e, is essentially
the median frequency of the entropy fluctuation
spectrum, the prefactors in Eq. (16) are required
for consistency with Eq. (12). We further note at
this point that the usual frequency ratio w of the
order parameter and entropy relaxation rates is
in the present notation of O(o&4/').

For ! Z!»1 the asymptotic limit of Eq. (17) is

y&(k, K, (d) = (d~(& —in) (21)

Although Eq. (21) overestimates yz in the small-
frequency range by approximately 20%, it gives
a representation of the overall frequency depen-
dence that is sufficiently accurate for the pres-
ent purposes. The resulting curves for ~,Re@~
are plotted in Fig. 1 for the four different values
of o'/' equal to 8, 2, 1, and W2, as identified by
the central value at 0= 0. The shape is seen to
vary from a two-Lorentzian flat form to that of a
single Lorentzian, comparing satisfactorily with
the experimental trend. With 0 increasing, as a
consequence of the growth of K/k, the center of
the spectrum fills in, while the wings change very
little. Only after the central valley is filled up,
resulting in a nearly Lorentzian shape, does the
spectrum start to shrink in the manner expected
from conventional dynamic scaling. ' A conven-
ient measure of the frequency width of the spec-
trum is the median frequency, ' which is plotted
as the lower curve in Fig. 2. The expansion of
the spectral critical region predicted by Eq. (9)
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FIG. 1. Spectra1 strength of entropy fluctuations vs

frequency~ for 0' '= 8, 2, 1 and ~2, as identified by
the strength at 0 =0. Raising the temperature above
the A. point increases 0 in a linear proportion. 0.( 1
and 0) 1 correspond to the (median frequency) critical
and hydrodynamic regions, respectively. The spectral
strength is obtained from the real part of Eq. (13) after
substituting Eq. (21).

is clearly evident. In contrast is the upper curve
of Fig. 2 which shows the zero-frequency value
of the entropy relaxation rate, ys/&u, . This is
the quantity that determines the temperature de-
pendence of the thermal conductivity, and its
critical region is unaffected by the present con-
siderations.

The above considerations above the A. point can
also be applied below the A. point. Although the
dynamics of the ordered state are more compli-
cated, we expect that the damping of second
sound in the critical region is determined by the
high-frequency tail of y~. Evaluated at the propa-
gating frequency ~, ~k~' ', Eq. (10b) predicts a
breadth proportional to ~-' '. The corresponding
exponent of -+ for the temperature dependence
may be sufficiently small to be consistent with
the reported constancy of the width of the second
sound doublet lines. %e expect the ——,

' power law

to hold over a critical-temperature region ex-
panded by the factor 0&

' . Finally, with further
lowering of the temperature, the conventional -3
power sets in in the hydrodynamic region. Be-
cause of the expansion of the critical region, the
strength of the damping in the hydrodynamic
region is enhanced by o& ~', in the scale of cu, .
This may account, at least partly, .for the factor
of five"'" by which Tyson's measured second-
sound damping" exceeds the estimate based on
conventional theory. These speculations on the
situation below the A. point are obviously not com-

FIG. 2. Two different characteristic frequencies for
the entropy fluctuation spectrum (versus inverse cor-
relation length in units of

2
0 = x/X, where X is the fluc-

tuation wavelength). The upper curve shows the zero-
frequency value of the entropy relaxation rate, ys /~, ,
which has the conventional critical region as shown.
The lower curve exhibits the median frequency of Hal-
perin and Hohenberg (Ref. 2) for spectra of the type
shown in Fig. 1. The critical region for the median
frequency is expanded by the factor Og . The curves
have been calculated for 0& = 8.

pelling and will require close quantitative study.
To summarize, we have presented a simple

physical argument which accounts for the en-
larged critical region found by Tarvin, Vidal,
and Greytak. ' The explanation relies upon the
presumed very slow relaxation of the order pa-
rameter. " In addition, we have predicted in Fig.
1 the changes expected in the spectral shape as
liquid helium is brought out of the critical region.
The double-hump shape ought to persist over an
appreciable temperature interval above the A.

point. This w'ould provide a crucial test of our
theory if the experimental resolution could be in-
creased sufficiently.
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U. S. National Science Foundation.
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The temperature dependence of the spontaneous polarization o f ferroelectric triglycine
sulfate has been determined in the range 2.2-20 K by measuring the charge released by
a large crystalline sample with a Keithley electrometer. Above -8 K this temperature
dependence is KP'~=Ce ~~~ corresponding to a two-level system with energy splitting
Q=hvE =9.08&10 erg, while between 2.2 and 4 K it is E&~=AT ~ . Both temperature de-
pendences are consistent with recent specific-heat measurements by Lawless.

Low-temperature specific-heat measurements"' consistent with the specific-beat observations.
on a number of hydrogen-bonded and displacive The samples were single-crystal plates, rang-
ferroelectrics have consistently shown a contri- ing in size from 5 cm'&0. 5 cm to 1 cm'&&0.2 cm,
bution proportional to T' '. This contribution made available to us by B. Jimenez from the Con-
will eventually become dominant over the Debye sejo Superior de Investigaciones Cientisicas, Ma-
T' contribution as T -0. On the other hand, it drid. Gold electrodes were attached to the main
has been suggested, ' on thermodynamic grounds, surfaces (perpendicular to the ferroelectric b

that in zero field the specific heat and the sponta- axis) by evaporation in a vacuum.
neous polarization (as T - 0) should both be pro- ' The samples were placed within the can of a
portional to the same power of T; in particular liquid-He cryostat in which He gas at a pressure
C,(T) =B'T' would require &P,(T) =A'T' (i.e., of 1 Torr was kept, to insure good thermal equi-
&, =BPJBPJBT ~T'), and in analogy with the librium. The larger sample, with which most
ferromagnetic case, C,(T) =BT' ' would require measurements below 4 K were performed, was
b,P,(T) =AT' '. These considerations imply sandwiched between two stainless-steel plates
that accurate measurements of possible slight (which provided for the electrical contacts) and
changes in the spontaneous polarization as T - 0 freely suspended within the can to avoid inhomo-
would lend further support to the specific-heat geneous stresses.
findings of Lawless"' if the same T dependence This can was temperature controlled by means
is observed. To our knowledge, no measure- of an electronic controller. The sample tempera-
ments of P, down to 2.2 K have been reported in ture was measured by a calibrated Cryocal ger-
the literature. Thus, we think that the observa- manium resistor (using the standard four-termi-
tions presented here are the first of their kind nal potentiometric method) attached to the ground
in any ferroelectric material. They appear to be electrode of the sample. Another thermometer
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