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r the direct forbidden 1S exciton and the

long-standing controversy concerning the

We present for the first time two-photon m
polarization analysis yields I'3+ symmetry fo
upper valence band. Our results clear up the
symmetry of the upper valence band.

As proposed by Loudon, ' the direct forbidden
transitions are specially suited to be studied by
two-photon spectroscopy. Loudon calculated the
two-photon absorption for Cu 0, which was later
studied by Pradbre and co-workers. ' Because of
experimental difficulties these authors found only
a weak structure, which they attribute to the 1S
exciton. They were not able to measure the polar-
ization dependence. We present for the first time
a detailed polarization analysis of such a direct
forbidden transition. Using this technique we are
able to resolve the long-standing puzzle on the
band-gap assignment in Sno, (D,"„).

Though the early indication of SnO, being an in-
direct material'4 could no longer be maintained
after the excellent work of Nagasawa and Shion-

oya, ' the symmetry assignment of the direct gap
remained as a controversy. Nagasawa and Shion-
oya were able to show that the band gap is direct
forbidden at K =0. They offer three possibilities
for the highest valence band (&,', I",', 2,') as-
suming a 1",+ lowest conduction band, which is
agreed on in later experimental'" as well as theo-
retical investigations. ' Agekyan' analyzed the
quadrupole transition to the XS exciton and deter-
mined I',+ symmetry for the top valence band.
There are two band-structure calculations"
published which contradict each other as weQ as
the assignment of Agekyan. Arlinghaus' assigns
the top valence band to be of F,+ symmetry where-
as Jacquemin' comes up with a I', ' valence band.
Jacquemin states that his assignment is compat-
ible with the experimental results of Agekyan. "

A third band-structure calculation was very re-
cently presented by Robertson, "who calculated
the highest valence band to be of I",' symmetry.
In order to clear up this controversy, we pre-
sent two-photon data on the lowest exciton. A

complete polarization analysis of this transition
allows an unambiguous assignment of the upper
valence band to T',' symmetry.

Our basic experimental setup is described in

detail by Fromich and Sondergeld. " To improve
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FIG. 1. Two-photon spectra of 1S exciton in rutile
Sn02 at 4.6 K (resolution 0.16 mev) . ]] configuration
(0'/0'), both polarization vectors e~ and &2 parallel to
[100]; & configuration (0 /90'), Zq in [100] and e2 in
[010]directions.
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the signal-to-noise ratio and the spectral resolu-
tion we used for most of the measurements a stil-
ben dye laser (0.15 meV resolution) pumped by a
krypton laser instead of the standard xenon flash-
lamp plus monochromator (5 meV resolution).
As a high-power laser we used a Raman-shifted
(H, gas at 40 bars) Nd-doped yttrium-aluminum-
garnet laser (0.6496 eV). The crystals" were of
high quality as indicated by the narrow linewidth
of the 1S exciton.

In Figs. 1 and 2 we present two examples of ex-
perimental spectra. All data presented here were
taken with K vectors parallel to the tetragonal
axis. The high-resolution (0.15 meV) results of
Fig. 1 were gained with the dye-laser setup where-
as for the measurements in Fig. 2 we used the
standard flash-lamp setup (5 meV resolution).
From the high-resolution data of Fig. 1 we deduce
for the position of the 1S exciton an energy of
(3.5630+ 3) && 10 eV, which is in agreement with
one-photon data." The polarization analysis
using the standard formalism'4 allows an unam-
biguous assignment: From Fig. 1 we deduce the
two possibilities of F,+ and F,+ as final state.
The result of Fig. 2 excludes T',+, thus leading
to the assignment of F,' symmetry to the lowest
exciton. Since the lowest conduction band is of
I',' symmetry we deduce for the upper valence
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FIG. 2. Two-photon spectra of 1S exciton in rutile
Sn02 at 4.5 K (resolution 5 meV). ]] configuration (45'/
45 ), both polarization vectors && and e& parallel to I110];
z configuration (45'/135'), e& in [110] and g& in [110] di-
rections.

band T',' symmetry. The rather small absorp-
tion in the perpendicular configuration (0'/90') in
Fig. 1 and in the parallel configuration (45'/45')
in Fig. 2 can be explained by the depolarization
of the crystal. Additional measurements with
circular polarized light confirm the above assign-
ment.

Other compounds with a direct forbidden band

gap like GeO„TiO„and Cu, O are good candi-
dates to be studied with this technique. The po-
larization analysis should help to clear up still
existing uncertainties concerning the symmetry
assignments not only of the uppermost valence
band and lowest conduction band but of higher-
energy transitions as well. Using this technique
one should, e.g., be able to locate the second
conduction band in SnO„which is supposedly of
1 4' symmetry.
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