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~ 2.00 (GeV/c)'j. The cross sec-
tion here falls with increasing incident momentum
until about p, =210 GeV/c after which it appears
to rise with further increase in momentum. This
rise with increasing incident momentum is a gen-
eral property of elastic-scattering models where
the eikonal is a function of energy times a func-
tion of the impact parameter. '
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The action of conformal transformations on gauge potentials can be defined in a gauge-
covariant fashion. This unconventional procedure is used in several branches of theo-
retical physics, with the consequence that gauge potentials do not transform according
to a representation of the conformal group; rather, they provide a representation for
the "group of paths" of the conformal group. The nonintegrable phase factor is central
to the construction.

Conformal transformations, which form a symmetry group for Yang-Mills theory, are usually real-
ized on gauge potentials A" (taken as anti-Hermitian matrices in the space of infinitesimal group gen-
erators) by

A~(x) = A'"(x) =A (x') Bx.'/Bx„.
con forms

transfor matio n

Here x (x, a) are the conformally transformed space-time coordinates, depending on the original coor-
dinates x, and on the fifteen parameters {a}of the conformal group. The above is equivalent to the in-
finitesimal formulas

x'" =x"+f",
A'"(x) =A "(x)+ &cA "(x),

~,A»=f B.A»+A»f.
with f (x) being the fifteen-parameter solution of Killing's equation:

Baf&+ B&f —sg &B&f 7=0, f (x)=a +bx +a& Bx&+ 2x csxs —c "x',

(2a)

(2b)

Expressions (1) and (2) reflect the fact that gauge potentials combine with derivatives to form gauge-
covariant quantities. Covariance under coordinate transformations is maintained by transforming
gauge potentials as derivatives, so that the differential form A (x)dx& is coordinate invariant.

In the usual way, the infinitesimal transformation determines the conserved currents by Noether's
theorem. ' These involve the energy-momentum tensor; however, it is the canonical, nonsymmetric
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tensor that appears. There are several disagreeable aspects to this procedure: The canonical tensor
is not the one which couples to gravity; moreover, in a gauge theory it is not gauge invariant, and
hence is obviously unphysical; the form of the conformal currents is rather inelegant. The remedy is
well known': By adding superpotentials to the Noetherian conformal currents, one can reexpress them
simply in terms of the symmetric, Belinfante energy-momentum tensor, 6t~", which is gauge invariant
and which does couple to gravity,

( {1—e)1~f (4)

Conservation of the currents C" follows from the zero trace of 8""when f" satisfies (3).
It is natural to inquire whether one can modify the transformation law (I) and (2), so that the Noether

current is already given by (4), and no further improvement is needed. In this note it is shown that
such a modified transformation law does indeed exist, that its infinitesimal form has air eady appeared
in different contexts of theoretical physics, and that the corresponding finite construction is mathe-
matically interesting with implications for supersymmetry transformations.

I et us observe that (2b) may also be written as

5cAu f (s Av BvA +[A 1Am])+et(f~A )+[Au f~A ] f~ u+X)uf A
()~-~=s-» e»-+[A-,A~], ~~=~~+[A~, .

The second contribution to &oA is an infinitesimal (field-depedent) gauge transformation, which sepa-
rately leaves the Yang-Mills theory invariant. Thus we see that by supplementing the infinitesimal
conformal transformation by an infinitesimal gauge transformation, we arrive at a transformation law
expressed in terms of the gauge field E"':

(6)

Because the response of the potential is gauge covariant (a pure gauge is left invariant) (6) may be
called a gauge-covariant conformal transformation. It is clear that (6) is a symmetry transformation
for Yang-Mills theory and that Noether's procedure yields the gauge-invariant current (4).

The gauge-covariant transformation Iaw arose previously in investigations of (extended) supersym-
metry. The compositicm law for two infinitesimal supersymmetry transformations involves an infinite-
simal (conformal) space-time transformation. It was noted that in this circumstance the conformal
transformation appears in its gauge-covariant form. ' Small deformations of pseudpparticle solutions
to the Yang-Mills equation provide an apparently unrelated context for Eq. (6). Here one is also in-
terested in deformations arising from infinitesimal conformal transformations. Again it proved use-
ful to use the gauge-covariant expression. '

Given the infinitesimal form (6), we wish to determine the finite transformation law, for example,
by integrating the Lie differential equations. So first we check the integrability condition. From (6)
it follows that

(()(2)()(1) ()(1)()(2))AP ()(12)A )t co)1 (f (1)f (2)~a 8)

The infinitesimal coordinate transform for ()(') (5(2)) is f {' (f {' ); for ()(12 it is f„{"given by

f (12) f (1)S)1f {2) f (2)SPf {I) (8)

which is a Killing vector provided that f ' and f ' are. Thus we see that whereas the first term on
the right-hand side of (7) has the correct form, the second term, which is a gauge transformation,
spoils the integrability condition whenever it is nonvanishing. Consequently the infinitesimal gauge-
covariant conformal transformations cannot be integrated to finite values; they do not form a group;
and a fortiori they do not give a representation of the conformal group.

It is, of course, possible to provide a finite transformation law which reduces to (6) in the infinitesi-
mal limit. I propose

A'"(x)=U 'A"(x'), " U+(J-' V= U-'A (x')U+U-', U
g aug e —covariant V

ex
CX P
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The new rule is a gauge transformation of the old one, with the gauge function U given by the noninte-
grable phase factor, 4

U= P exp [—J A "(z)dz ] (9b)

(P stands for path ordering). The substitution x =x+f and expansion to first order in f reproduces (6).
The finite gauge-covariant conformal transformation is seen to be path dependent, and to define it

completely, we must specify the path for the integral in (9b). A useful prescription is obtained by re-
calling that for a one-parameter subset of transformations the integrability condition is satisfied [when
f„~'~ and f„2~ are proportional, the right-hand side of (7) vanishes] and (9) must reduce to a representa-
tion of the Abelian subgroup. It will be shown that the following path possesses this property.

To define the line integral, consider first the manifold of the conformal group where the "points"
are the group elements. Any group element g can be reached by traversing a path on this manifold
which proceeds from the point representing the identity e to g. Correspondingly in configuration space,
a space-time path, which passes from x to x, is traced. It is this path that is used in the line inte-
gra, l (9b).

A one-parameter family of conformal transformations may be specified by Af, where f is fixed and
A. varies from 0 to 1. The path is then given by z(A) =x'(x, Aa) with z(0) =x'(x, 0) =x, z(1) =x'(x, a) =x'.
The Lie equation is

s8 "(A) s8 "(A.) s8~(A) [~( ) p( )] (10)

where 8"(X) is the transform of the gauge potential appropriate to a conformal transformation which
takes x to x'(x, Xa). We now show that the proposed formula, written for this X-parametrized case,

8~ (~) = U-'(~)A" (z)[sz„(~)/sx„]U(~)+ U-'(x) s U(~)/sx„,

U = (X) =P exp( J, A"—(z)[Sz~(X')/s A. ']dA. 'j,
satisfies (10). Repeated use of

SU(A)/SA. =-A"(z)[sz (A)/SA] U(A)

gives for the left-hand side of (10)

,( )
sA. (z) sA (z) „( ) s( ) ( )

sz (X) szs(A)
~ZO ~Z g BX Bg„

Similarly, the right-hand side reads

U-, (~) ( ) ( ) An() As( ) U(~)f u( ) s( )
BZ BZg ' & BXy 8gp

(11a)

(11b)

(12)

The two are equal, since the Lie equation for the
conformal transformation of the coordinates is

sz (x)/sr=f, sz„(x)/sx, .

This establishes that the proposed transformation
law properly reduces to representations of Abel-
ian subgroups of the conformal group.

Since (9) was obtained by construction, rather
than derivation, it may be possible to find another
rule, which has the correct infinitesimal and
one-parameter limits. The formula presented
here does, however, have a unique property:
Although it does not describe a representation
of the conformal group, it gives a representation
of a much larger group which can be associated
with the conformal group —the "group of paths. "

! Following suggestions of Coleman and Gold-
stone, we can construct this group. Consider
again the manifold of the conformal group, with
paths proceeding in every possible way from e
to each of the group elements. The members of
the group of paths are these paths. Homotopically
equivalent ones are not identified, but paths that
differ only by an even number of traversals of
the same loci are. The identity element com-
prises the (degenerate) path that stays at e, as
well as all other paths that proceed from and
return to e along the same loci. Two paths P,
and I', are composed by multiplying P by g„
the conformal group element on which P, ends,
and adjoining g, P2 to P„ in other words, the
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beginning of I'2 is attached to the end of P„ to
form the longer path P» terminating at the ele-
mentg»=g, g, . It is now easy to verify that the
above construction defines a group —the group
of paths —and that the gauge potential transfor-
mation law (9) is a representation of this group.

I find it interesting that the physically motivated
and attractive infinitesimal transformation law

(6) should have such an involved mathematical
structure, but the practical consequences of
these formal considerations are not apparent
to me. The structure of finite supersymmetric
transformations, which are a "square root" of
gauge-covariant conformal ones, should be ex-
plored further to see whether the complexities
here exposed are hidden there as well. I bene-
fitted from discussions and suggestions by S. Cole-
man and J. Goldstone, which I gratefully ack-
nowledge. This research was supported in part
by funds provided by the U. S. Department of
Energy under Contract No. EY-76-C-02-3069.

Note added. —B. Zumino points out that the

gauge-covariant conformal transformation arises
in a supersymmetric theory only after auxiliary
fields are eliminated, with the help of the%ess-
Zumino gauge condition. If they are retained,
the conformal transformations are conventional,
and no complications are anticipated.

For a summary, see S. Treiman, H. Jackiw, and
D. Gross, Lectures on Current A/gebxa and Its APPli-
cations (Princeton Univ. Press, Princeton, N. J.,
1972), p. 97.
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The cross section of He(p, d)~He at 6I = 22.5 has been measured between T&
——200 and

500 MeV, which together with previous data provides the first excitation function for the
(p, d) reaction up to T&

——770 MeV and 0.7 Gev/c momentum transfer. The energy varia-
tion is found mainly to reflect a strong dependence upon momentum transfer. Using
known nuclear wave functions we examine the contributions from ordinary neutron pick-
up and certain multinucleon reaction mechanisms.

The (p, d) reaction at intermediate energies
can reach large momentum transfer which must
be supplied by the nuclear state. The nuclear
momentum needed can come from an individual
nucleon whose momentum is that kinematically
specified by the recoiling nucleus. In such a
single-nucleon interaction model, the cross-sec-
tion dependence in terms of the recoil momen-
tum will reflect the single-nucleon momentum
distribution to the extent that there is no rescat-
tering involving other nucleons. Rescattering ef-
fects can be important when the momentum dis-
tribution varies rapidly and assumes small val-
ues. They can be accounted for by means of opti-

cal potentials and their effect on the reaction
dynamics can be realized in standard distorted-
wave Born-approximation calculations. In this
application it is the off-shell momenta generated
by the optical potential that are tested. '

Another way to deal with rescattering effects
is by way of reaction diagrams where the multi-
nucleon interactions, that are believed to domi-
nate the reaction dynamics, can be treated im-
plicitly in terms of known subprocesses and speci-
fied momentum dependence of the nuclear struc-
ture. This approach is of particular interest for
assessing the importance of pion production/ab-
sorption effects in the (p, d) reaction.
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