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We consider a model designed to describe the interaction between the conduction elec-
trons and the localized configurational excitations (tunneling states) in metallic glasses.
We show that this interaction is dominated by an infinite sequence of Anderson overlap
catastrophies. Using perturbation theory and scaling arguments we analyze the low-tem-
perature behavior of the model.

In this Letter we explore some of the conse-
quences of the interaction between tunneling lev-
els and conduction electrons in metallic glasses.
These levels, arising from local rearrangements
of the amorphous atomic structure, were origi-
nally proposed to explain the low-temperature
(T(1 K) properties of insulating glasses. "
Moreover, it has been conjectured that they are
generic features of the glassy state. ' Recent
ultrasonic saturation experiments" have dramat-
ically confirmed earlier indications that these
local configurational excitations also exist in
metallic glasses. "Then, it becomes an interest-
ing question to ask how do they interact with the
electrons'' Cochrane et gl. ' and Tsuei' have sug-
gested that this coupling leads to precisely the
same divergent contribution to the resistivity as
occurs in the Kondo problem. However, we find
that the metallic-glass problem is quite different.
Nevertheless, the infrared-divergent response
of the degenerate electron gas to local time-de-
pendent perturbations (due to tunneling between
local configurations) plays an important role,
and this lends the problem a complexity of its own.

Our analysis is based upon a nonmagnetic model
which was proposed by Kondo to describe the in-
teraction between conduction electrons and an
atom which can tunnel between two positions. ' To
suit our purpose we reinterpret this model to ap-
ply to a group of atoms moving between two con-
figurations. Such two-state systems are most con-
veniently described by a pseudospin S,.= 2o,. (i=x,
y, z), where o,. are the Pauli spin matrices. Thus,
our basic Hamiltonian is

H =+ E»c» c»+ DS»+ QS„

+K~~~S, N 'g c„c„.,
an'

where ~„ is the single-electron energy, 4 is the
energy difference between the two configurational
states, g is the tunneling frequency in energy

units, E is the total number of atoms in the sam-
ple, and I|,

~~
is the coupling energy. Note that, for

the sake of simplicity, we have neglected all S, -
independent potential scattering terms and there-
fore aim to discuss only the qualitative features
of the interaction.

We would like to stress that in our model an
electron merely sees a different scattering po-
tential for each state of the configuration but has
no effective internal-spin degree of freedom as
in Ref. 7. There it is assumed that the single-
particle conduction-electron states in the pres-
ence of one tunneling configuration are orthogon-
al to those in the presence of the other configura-
tion. This approach is questionable because the
current-carrying electrons are not the electrons
which are tightly bound to the atomic cores. Fur-
thermore, if this picture were correct, the con-
duction electrons would have to be trapped inside
the regions defined by the tunneling systems. To
avoid such conceptual difficulties, we make no
assumptions beforehand about the effect of the
tunneling levels upon the electrons.

Let us begin by calculating the scattering rate
7; '(~) for an electron of energy ~ (measured
from e F) in perturbation theory using R~~ as a
small parameter. To lowest order (E„'), we find
the usual Born-approximation result, which we
have shown elsewhere" to be unobservably small.
In the Kondo problem the third-order contribu-
tion to 7, '(cu) diverges as J'lnj&/cu ~, where J is
the exchange energy and B is the bandwidth. In
contrast we find a contribution of the form
A~~'1n~(~ -E)/(~+E) ~, where E'= 6'+ /'. This
term does not contribute to the resistivity be-
cause it is an odd function of ~. This difference
between the Kondo problem and the problem at
hand is due to the difference in the spin algebra.
However, the next term diverges as ~-0. For
T«+ «E, to leading logarithmic approximation,
it is given by

[~, '(&u)]' =-—p '(pK )', tanh' ln—
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where p is the electronic density of states per atom at c„and P=(kBT) '. Independently of the signs
of K~~ b,, and + this result indicates a singularity which tends to reduce the resistivity as the temper-
ature is lowered. Thus the situation is similar to, but not identical with, the case of the ferromagnet-
ic Kondo problem for which the effective coupling between the local spin and the conduction electrons
decreases as T decreases.

The physical reason for the logarithmically divergent perturbation series above is the infrared-di-
vergent response of the degenerate electron gas to a time-dependent external potential (due to the tun-
neling term + in our Hamiltonian). As is well known, this effect is responsible for the various edge
singularities in soft-x-ray spectroscopy where the time-dependent potential is that due to the sudden
appearance or disappearance of a core hole. " It also accounts for the complexity of the Kondo prob-
lem where the time-dependent perturbation is caused by the flipping of the impurity spins. " In what
follows we shall draw on the expertise developed in these fields to analyze our model beyond low-order
perturbation theory.

Anderson, Yuval, and Hamann" have obtained a qualitatively correct solution to the Kondo problem
by transforming it into a fictitious statistical mechanics problem of one-dimensional charged parti-
cles interacting via logarithmic pair potentials and then analyzing the scaling properties of the new
problem with changes in the short-range cutoff associated with the pair potentials. (This cutoff is re-
lated to the bandwidth in the original problem. ) Likewise, it can be shown that our problem, as de-
fined by the Hamiltonian given in Eq. (1) is equivalent" to a logarithmic gas whose grand partition func-
tion is given by

d~/d lnT = (1 ——,'K~~') E„
dK ~~/d In~ = —(2A) ' K N' &0',

~h~~~ Z, = S,~, K
~~

= 25/& = pK ~~, and A = (K t~')„

(4)

~= Z(-'&)'"J. dC.." J. '
du, p(Z(-

tf =0 i&g

where e= 2 - (25/m)', tan5 = &n'pK~~ and v is in-
versely proportional to the bandwidth D. Note
that the quantity P is the true inverse tempera-
ture and should not be confused with the tempera-
ture of the logarithmic gas.

Significantly, Eq. (3) differs from the corre-
sponding Kondo result in that, for weak coupling,
we are near e = 2 (5 « I) while in the Kondo case
e is near 0. This is illustrated in Fig. 1. Thus,
the logarithmic gas for our problem is in the
"high-temperature" regime, far removed from
the "phase-transition" region, e=O, of the Kondo
problem.

The basic idea of scaling in this context is to
transform the problem at low temperatures to an
equivalent problem with appropriately altered
coupling constants at high T where the logarith-
mic divergences can be treated in perturbation
theory. The fundamental assumption is that the
temperature enters only through P/7' so that we
may carry out this transformation by increasing

Anderson, Yuval, and Hamann" derived a set
of scaling equations for the coupling constants
and argued that it is valid everywhere near the
+=0 axis in Fig. 1. Translating their scaling
equations into the language of our model we find

1)' '(2 —~)»I.(P; —P,)/~)+ &Z(- I)'P$),

the initial value. The sealing trajectories are
shown in Fig. 1.

Evidently the K~I equation implies that the cou-
pling gets sneaker as T increases. As was ex-
plained above, increasing 7 amounts to decreas-
ing T. From the g equation it follows that the
tunneling frequency A™,v ' also decreases as T is
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FIG. 1. Scaling curves for the logarithmic gas with
charges + (2 —e) ~ and fugacity 60. The Kondo-problem
curves begin near ~ =0, 60 =0. The metallic-glass
curves begin near ~ =2, Ao =0. The two exactly solva-
ble limits are shown by vertical lines. The inset shows
the scaling curves near e =2 reexpressed in terms of
E~i to emphasize the decreasing behavior.
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lowered. In fact, if we ignore the weak decrease
in K~~ we can integrate Eq. (4) from To= 8 ' to T
= P to obtain

~ (T) = ~.(TIL)'~"' (5)

Equations (4) and (5) are our main results. They
imply that the net effect of the logarithmic diver-
gences encountered in perturbation theory is to
reduce the tunneling frequency Q(T) as the tem-
perature decreases. A similar result was con-
jectured by Kondo on the basis of low-order per-
turbation theory. '

It may clarify matters if we note that the above
behavior derives from the long-time limit of the
correlation function F(t) = (S,(t)S (0)). The di-
rect analog of this quantity also appears in x-ray
spectroscopy where it is related to the x-ray
photoemission cross section. In that context it
is well known" to behave as E(t) -(t/T)
because of the Anderson overlap catastrophe. '4

Thus, the other types of infrared divergences
which lead to enhancement of the emission and

absorption edge and the resistivity increase in
the Kondo effect are not part of the metallic-glass
problem. Here, we have only the overlap catas-
trophe which always reduces the appropriate
transition amplitudes.

To proceed further with our analysis we now

use Eq. (4) to define a characteristic temperature
To which separates the high- and low-temperature
regimes. Evidently scaling breaks down when +
=1. Thus we may define T, as the value of 7. 'at
which b =1. This yields

Q (Q/g)) E
p

/2 (6)

as was conjectured by Kondo' from the T =0 limit
of the tunneling rate. Taking a=10 eV, ~, =10 '
eV, and K~~=0. 1, we estimate T,/6, =0.9, which
is not a very significant reduction. We note, how-

ever, that T, [ and also the result in Eq. (5)] is
a very sensitive function of K~t.

Unfortunately the scaling equations do not tell
us how to calculate such interesting quantities as
the resistivity and the "spin"-lattice relaxation
rate T, ' relevant to ultrasonic measurements.
However, they may be used as bases for a num-
ber of conjectures. The scaling of K~, towards
zero strongly suggests that the coupling between
the electrons and the tunneling levels becomes
weaker as T is lowered towards To. Therefore,
it is reasonable to expect that the electron scat-
tering rate (and hence the resistivity) due to the
tunneling levies decreases with T. This supports
our earlier conclusion based on perturbation

theory. For T & T, we would expect no tempera-
ture-dependent contribution to the resistivity
from the mechanisms described in this paper.

This is not to say that the interaction between
the tunneling states and the conduction electrons
will have no observable effects. As has been
established by Golding et al. ' the Korringa relaxa-
tion rate (T, ) of the tunneling levels, which is
proportional to K~~'6, ', has observable conse-
quences in ultrasonic attenuation. Moreover,
there are a number of other observable quanti-
ties which are proportional to 6,' such as the
resonant ultrasonic absorption coefficient and the
phonon contribution to the tunneling-level relaxa-
tion rate. On the basis of the above discussion
we suggest that these quantities may show power-
law anomalies if the exponent 0 & —,'K ~t' & ~ turns
out to be large enough in some systems. Further-
more, in the superconducting state, where it is
expected that the tunneling-level-conduction-elec-
tron interaction is completely frozen out on ac-
count of the gap, we would predict that in addi-
tion to the Korringa rate going to zero all the
tunneling frequencies will be shifted upwards. It
is hoped that ultrasonic experiments to test these
ideas can be devised.
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this crystalline phase melts at exactly the reen-
trant transition temperature to the smectic-A
phase.

%e have used an improved x-ray diffraction
system equipped with a rotating anode and a bent—
quartz-crystal monochromator. The patterns are
registered with a stable position-sensitive x-ray
detector. This apparatus has been previously de-
scribed. ' The exposure time for each pattern
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FIG. 1. Transition temperatures versus concentra-
tion for equal-weight 60CB (cyanohexyloxybiphenyl) in
8OC B (cyanoctyloxybiphenyl).

We report results from x-ray experiments on mixtures of N-(P-hexyloxybenzylidene)-
P -aminobenzonitrile (HBAB) in N P-cy-anobenzylidene-P-m-octloxyaniline (C BOOA); very
recent microscopic observations on mixtures of cyanohexyloxybiphenyl in cyanooctyloxy-
biphenyl are in agreement with these results. The evidence suggests that the reentrant
nematic phase is similar to the classical nematic phase but may coexist with crystalline
fluctuations ~

It has been shown recently' that mixtures
formed with two liquid crystals could exhibit with
decreasing temperature the following sequence
of phases: nematic, smectic A, and then again
nematic. The nematic phase which occurs at low
temperature is called the reentrant nematic
pha, se (Fig. 1). The same phenomenom has also
been observed with pure compounds under pres-
sure. ' By increasing the pressure from the
nematic phase, we observe the smectic phase
and then again a nematic phase at high pressure.
The nematic phase which occurs at high pressure 90

is also called the reentrant nematic phase. All
these results have been obtained using the light 80 =
microscope.

A model has been proposed' for the organiza-
tion of the molecules in this reentrant nematic
phase. In this model, the molecules are assumed 60—
to be associated in antiparallel pairs in the
smectic-A phase, which then can be destabilized
as shown in Fig. 2.

Here we present for the first time the results 40—
SMECTIC Aof an x-ray investigation of this unusual phase,

and also very recent results of a microscopic R

study with a new mixture of thermotropic liquid
crystals (Fig. 1). The observations obtained with 20
the two techniques are in agreement and suggest
that the reentrant nematic phase with its very
close packing gives rise to the unusually slow
nucleation of a crystallinelike phase some 20 C
below the normal melting temperature. Further,

1598


