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metals. Extension of this work to other impur-
ities in Al is currently in progress.
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Despite the fact that the Frenkel-Kontorova mode1, with chain of atoms and sinusoidal
potential incommensurate, lacks translational symmetry, the structure factor S(q, u) for
this model is shown to exhibit always phonon peaks of negligible width.

There has recently been an upsurge in interest
in lattices with two incommensurate periodicities.
Examples of such systems are charge-density
waves incommensurate with the underlying lat-
tice, ' some superionic conductors in which the
mobile ions order in a structure incommensurate
with the rest of the lattice, ' and some thin films
which are incommensurate with the substrate. '
Such systems have no translational symmetry be-
cause there exists no nonzero translation under
which both periodicities are invariant. Two of
us have also shown' along with Aubry' that a mod-
el for such systems, known as the Frenkel-Konto-
rova model (which consists of a chain of atoms
connected by springs, interacting with a sinu-

soidal potential), exhibits a sharp transition at
a critical value of the strength of the sinusoidal
potential such that below this critical strength
the ground state of an infinite chain incommen-
surate with the sinusoidal potential is continuous-
ly degenerate. ' This implies the existence of a
zero-frequency sliding mode and the possibility
of free sliding of one periodicity with respect to
the other.

We will show that the dynamical structure fac-
tor 8(q, e) (i.e. , the imaginary part of the phonon
Green's function for the chain) exhibits sharp
phonon peaks of exceedingly small width, as for
a system with translational symmetry. Further-
more, because of the existence of a continuously
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degenerate ground state in the nonpinned regime,
S(q = 0, ~) actually has a peak of the form 5(~').
Since the electrical conductivity (for charged
atoms) is proportional to iuD(q = 0, e), where D
is the phonon Green's function, this leads one to
speculate on the possible existence of infinite dc
conductivity, i.e., the existence of "Frohlich
superconductivity" for charge-density waves,
superlubricating properties for incommensurate
thin films, ' and extremely plastic flow of in-
commensurate layered inter calation compounds. '
The presence of imperfections will certainly

prevent such ideal behavior from occurring, how-
ever, ' and the question of whether anything like
this can occur in real incommensurate systems,
which are relatively pure, must await further
work.

Our method of proof of the smallness of the
width of the peaks in S(q, v) is similar to the
methods used by Anderson, Economou, and
Cohen, and Thouless' in their studies of impur-
ity localization in lattices. The Frenkel-Konto-
rova model consists of a chain of atoms connect-
ed by springs situated in a sinusoidal potential
well and has a potential energy

N' N

V=2o. Q (x„„—x„—b)' —V, p cos(2iix„/a),
n=l n=l

where + is the force constant of a spring, Vo is the strength of the sinusoidal potential well, b and a
are the natural periods of the chain and the sinusoidal potential well, respectively, and x„ is the posi-
tion of the nth atom. The equation of motion for the lattice phonons is

m U„= —o(2U„—U„„,—U„,) —V,(2i|/a)'cos(2iix„/a) U„

(2)

where K is the dynamical matrix and f U„] are the displacements from the equilibrium positions (xJ
which satisfy periodic boundary conditions. ' Then, the Fourier transform of the phonon Green's func-
tion satisfies

2v 2 2@i 2v[~' —(u, '(q, (u')]D(q, (u')+ V, —PE D q+ —
&, ~'

where

~,'(q) = (2o./m) (1 —cosqb)

D(q ~2) Pe i~(~-~)i D (~2)

2v I 2vE —f =—P cos —x„exp[i2vl(b/a)n],0 - N n 0

with N the number of atoms in the crystal.
The quantity E((2w/a)l) can be found by solving the equilibrium equation, obtained by minimizing

Eq. (1), for x„ in perturbation theory, 4'" which to first order gives

x„=x, +(n —1)b —ysin(2'/a)[x, ' +(n —1)b],

where x, is the zeroth-order position of the first atom in the chain and

y= V,(2ii/a) [4o sin'(vb/a)] '. (8)

Perturbation theory was shown in Ref. 4 to give about 1% accuracy for small V, /o. . Using the standard
identity

i8 sHlP Q g (z)ei l P
oo

we find that

—l = —expi —l
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which is a rapidly decreasing function of /. Writing down the general term in the perturbation series
for x„, it is easy to show'" that for (2m/a) y&I, higher-order terms are insignificant and Eq. (11) is
suf ficient.

Vsing standard methods'0 the self-energy of D(q, cu), can be written as a perturbation series whose
(l+ l)th term is

where

2" l+1v 2 2 m
1

F ~ ~ ~ F g~ —a q+ —n
g 0nj. 0 r

/nrem ~0 r =1
(10)

~„~„.= Z((2~/a) (n - n ) ).
Since the set of wave vectors f(2m/a)nj define a reciprocal lattice for one of the periodicities in the
problem, we can think of each term in the perturbation series for II(q, ~') as a path in wave-vector
space which starts and ends at the point q, -without passing this point in any intermediate steps, in
which each hop occurs over a distance which is a multiple of 2m/a (the largest contribution comes from
short hops). For any general &u' within the phonon band defined by ~,'(q), there will exist some inte-
ger p such that

(o,'(q+2mp/a) =(o'

because b/a is an irrational number. Thus, in general there will be terms in the perturbation theory
which diverge for almost any value of &u'. The exception is ~'=~,'(q). Here terms involving cu,'(q)
are excluded, by the definition of II, from the perturbation series. " Furthermore, since b/a is ir-
rational, there exists no integer p & 0 such that

co,'(q+ 2'/a) = (u, '(q). (12)

For the case of a finite lattice these values of ~ at which the perturbation series diverges are dis-
crete, and therefore II (q, ru') will have poles along the Re&a' axis. In the thermodynamic limit, the
poles coalesce to form a branch cut. For most values of ~' the poles that occur in II for a finite sys-
tem appear only in very high-order terms in the perturbation series.

%e will now argue that these poles have vanishingly small residues.
The (1+1)th-order term for II has a pole at a given value of u&' with a residue of the form

2 1+1
2m

V — Q F ~ ~ F g u&'-~' q+ —n0 g p Q On& n$ 1f0 0 0'1nr& ~0 r =1
r~P

where v, '[q+(2m/a)p]=v'. The residue is of the
order of

2nbp"'p g' — 1 —cos qb+ n„
r=l
r+P

whirr~ Ii'= ~'(m/2a) and p = (I',/»)(2m/a)'. »
general, we expect that the mode frequencies
will not be shifted by a large amount, and hence
we are interested in values of u&' close to ~,'(q)
for calculating the broadening of the modes.
Because b/a is irrational, there are always val-
ues of n„such that &u,2[q+(2m/a)n„] is arbitrarily
close in value (but not equal) to ~,'(q). Never-
theless, this does not cause the perturbation
theory to diverge because such a denominator
always has a numerator of high order in P which
keeps the term small if P &1. We have calculat-
ed, on a computer, values p "/[1 —cos(2p/a)bn]

!
with n large and equal to values for which the
denominator becomes small and have found that
these terms become small rapidly as the value
of n increases, as long as P & 1. Also, because
of the irrational nature of b/a, qb+(2mb/ )na„
in Eq. (14), modulo 2v, forms a continuum be-
tween 0 and 2m. Thus, we can replace the de-
nominator of Eg. (14) by exp[(I -I)I], where

1 KI=
2

p J „In[0' —1+cosg]dg=in( —,')

if 0- 0'& 2 and where P denotes the principal
part. Thus, Eq. (14) can be approximated by

Similar arguments occur for the higher-order
poles. Hence, if P & &, the perturbation series
for the residue of II at ~' will certainly converge
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(it may also converge for larger values but we
cannot say anything about this). Thus, if the
Mth-order term is the lowest-order term of II
in which this pole appears, the residue is of
order (2P)".

Since M is quite large for general ~, me expect
the residue to be negligible. In the thermody-
namic limit, these poles coalesce into a branch
cut, and the discontinuity across this branch cut
must also be negligible. Thus, ImII is negligibly
small, and hence, the normal-mode frequencies
appear in S(q, ~) with negligibly small width.
This can be thought of as a localization in wave-
vector space, much like the localization in con-
figuration space found in disordered solids. "
This result was anticipated by Weisz et al.' The
physical reason for expecting this effect is that
although there exists near any main peak of S(q,&u)

a continuum of small peaks arbitrarily close in
frequency (&a= ru, '[q+(2~/a)m]j, these peaks pro-
duce almost no broadening of a main peak since
their intensities are rapidly decreasing functions
of M which must be large. The proof of a Bloch
theorem for such nearly periodic systems by
Dinaburg and Sinai~ does not address the ques-
tion of the widths of the phonon peaks.

For q =0, S(q, ~) actually has a 5-function peak
at ' = 0 because it was shown numerically in
Ref. 4 that there exists a mode at zero frequency.
Thus, we expect that

Rell(q =0, ur'=0) =0.

Although it is difficult to prove this result analyti-
cally using Ying's perturbation theory, "me can
show that Rell is zero up to third order in P.

Because denominators containing &u,'(q =0) do
not occur in Eq. (12), the perturbation series for
ll(q =0, va =0) converges. Since this implies that
II has a break in the branch cut along the Be&'
axis at cv' =0, S(q =0, ~) = lmD (q =0, &u) has a
peak proportional to 5(~').

Our conclusions are valid for P = (V,/2n)(2~/a)'
& 0.5. We have found that for values of P between
0.4 and 0.5 the sliding to nonsliding transition
occurs and hence we generally have sliding for
values of P & 0.5. For larger values of P, the
periodicities are in registry meaning that there
are fairly well-defined unit cells (with occasion-
al misfit dislocations), i.e. , the system to a good
approximation has translational invariance.
Hence, we also expect peaks in S(q, ~) of negligi-
ble width in this regime.

Recently Pokrovsky' has proven in lowest-or-
der perturbation theory that the present model
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has an acoustic mode. In the present paper me
consider the question of phonon damping, which.
requires consideration of higher orders in per-
turbation theory.
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