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7i'e study a model of a deformed nucleus in which protons and neutrons are described
as interacting rigid rotors with axial symmetry. The nucleus as a whole is no longer
axially symmetric. A magnetic-dipole collective state describing rotational oscillations
of protons against neutrons is predicted.

The electric dipole giant resonance is an iso-
vector collective excitation existing in all nuclei.
It has a semiclassical interpretation as a trans-
lational oscillation of protons against neutrons. '
This two-fluid picture suggests the existence of
additional modes of excitation in deformed nu-
clei. For instance, the neutron and proton de-
formed fluids might perform rotational oscilla-
tions of opposite phase around a common axis, '
generating an isovector magnetic resonance. '

In this paper we study the properties of a de-
formed nucleus in which protons and neutrons
are described as identical rigid rotors with axial
symmetry. The orientation of the two rotors is
completely specified by the Euler angles a~, P~,
n„, and P„needed to identify their symmetry .

axes Et, and E„.
If relative translational motion is excluded, the

kinetic energy of the whole system about its cen-
ter of mass is

r =(I/2iI, )[(r, ~')'+ (r ~')'+(lt„')'~(l„„'")'J, (I)

where I@~, I&~, I&„",, and I„~ are the compo-
nents of the angular momenta of protons and neu-
trons along their respective principal axes gp, gp,
$„, and q„(which are arbitrary) and 8, is their
common moment of inertia. Rotations around
the symmetry axes are excluded.

We assume the potential to be a function of the
angle between the symmetry axes f~ and E„,which
we denote by 2~. It is then convenient to express
T in a form which exhibits its ~ dependence. To
this end we define the principal axes for the

whole nucleus:

sin(28)

and the O(4) generators I =I ~ +I" and S =I+ - I ".
As will be shown in a more detailed presentation
of this work, the commutation relations of the
components of I and 8 are satisfied if we put

8
Sg =i—,Sq = —cotOI g, Sg = -tanHIq.

We can now replace the four dynamical varia-
bles n~, P~, n„, and P„by the Euler angles identi-
fying the principal axes and 0. The correspon-
dence is one to one if we allow the Euler angles
to vary over their full range and 6I to vary be-
tween zero and ~~. In order to express the
Hamiltonian in the new variables we observe
that the kinetic energy can also be written

T = [(8')'+ (I "&)'] = (t'+S')
28o

with the constraint
(P) I (n) P~p ~n

These constraints are automatically satisfied
by the realization (3) of S. We can therefore
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write the full Hamiltonian as

H = P —-„—,+ cot'Hlg'+tan'HI@') +V(8). (5)
0

geometry of the system must be

gCO Q (8 ~pi

~C(~m —8)~, 4n('8 (pm.

lim Ic) „g' —g'„P =0.I d

6 ~(P, m/2)

Equation (5) shows that the nucleus does not
This Hamiltonian is Hermitian for the wave func- have axial symmetry. The nucleus, however,
tions satisfying the condition must be invariant (i) under a rotation of & around

$ and (ii) under a separate rotation of & around
$ of protons or neutrons. Because of condition

(6) (i) the eigenfunctions are superpositions of in-
trinsic states with even or odd eigenvalues of
I&, denoted by K, according to whether they are

We assume for the potential a harmonic approzi- even (r„=1) or odd (r„=—1) under a rotation of
mation, which in order to be consistent with the the whole nucleus about q through &. In particu-

lar, they factorize as

knlAfr 16&2 ~))(K + ( ) 4 E ]( + EO) nlEy
-i/2

as a consequence of condition (ii). This symmetry allows us to solve the eigenvalue equation for the
C''s in the interval 0 - 8 - && only. Expanding the Hamiltonian in this interval up to order 0' we get

1 d' EP 1-~ de. +~ 8, +2(~.)&'8'-&.x O'. Ix=0,

where &„~ is the intrinsic excitation energy, and
(d = (C/28, )' '. In Eq. (10) we neglected terms of
the order of 1/28, as compared to C. This is
permissible because 1/M, C =8,' turns out to be
much smaller than 1, as shown by the following 3 j

numerical estimates. Paralleling the procedure
of Goldhaber and Teller' we impose the condi-
tion

(10)

! volume of the nucleus due to the rotation of pro-
tons against neutrons by the angle 8, around $.
As a result we get

(12)

where & is the deformation parameter, ' rp is the
range of the neutron-proton interaction, and R
=1.2A. ' ' fm. Assuming the moment of inertia to
be'8, =~8„z(1+-,5) we gete, '-1.5x 10' and cu

-6 MeV, for the values A =180, 6 =0.25, op=40
MeV, and xp=2 fm.

Because of the small value of 00 we can extend
to ~ the range of 8 in Eq. (10). The I =0 solutions
of Eq. (10) are

—,'Ce, '=~N(e, ) „
where vp is the proton-neutron separation energy
and 8, is the value of 8 such that for 8) 8„6N(8,)
neutron-proton pairs do not interact. &N(8,) is
half the nuclear density times the variation of

e =[2'"-'(2~)!~"8J' ' II,(8/8 ) exp(- e'/28 ')

for I=Q, r„=+1;I=1, x„=—1; and I=2, r„=—1. In the right-hand side K is a function of x„ taking
the value zero in the first case and 1 in the others. We will confine ourselves to these states, which
must have the symmetry

4 .(8)=(-1)'c .(-' -8)

with eigenvalues

e„,= (2n +-,')&u. (14)

It should be noted that only even Hermite polynomials appear because of the Hermiticity conditions
[Eq. (5)].

The x„=-1, I = 1,2 intrinsic eigenfunctions are

g2

I"(n+p+1) 8, 8, 0
(15)
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where L„~are the generalized Laguerre polyno-
minals. ' The corresponding eigenvalues are

e„, = (2n +p+1)&u. (18)

The lowest-lying excited states determined are
C',«, @~„with intrinsic excitation energies &„
-12 MeV and &»-10 MeV for the values of the
parameters previously given. The I =0 state is
not coupled to the ground state by electromag-
netic transitions. The I=1 state is excited by the
isovector component of MI radiation with a
strength probability B(M1)- 9 times the single-
particle Weisskopf estimate. The I = 2 state is
excited by the isovector component of E2 radia-
tion with a transition probability B(E2)-8 times
the single-particle Weisskopf estimate. All iso-
scalar electromagnetic probabilities are zero.

A microscopic calculation' based on a schemat-
ic model predicts an isovector &=1 state which
has been interpreted as the microscopic counter-
part to our r„=-1 state. The state of Bef. 6,
however, has an excitation energy of 2.3 MeV
and a B(E2) strength of 0.5 Weisskopf units (for
A, =180 and & =0.25), which are considerably low-
er than our values. On the other hand, the pres-
ent approach is so different from the one adopted
in Bef. 6 that the correspondence bebveen the two
states ls not obvious to' us ID particular the
centrifugal force, which is responsible for the
high excitation energy of K& 0 states, plays a
fundamental role in the present model unlike the
case in the usual models. The importance of the
centrifugal force becomes apparent in the classi-
cal analysis of the present model. The simplest
classical motions of our system are either ro-
tational osciQations of protons against neutrons
or rotations of the nucleus as a whole while the
proton and neutron symmetry axes stay at a fixed
angle as determined by the equilibrium between

the centrifugal force and the restoring force.
Our model differs from the one of Ref 6 in

another major respect. Our states, in fact, in-
cluding the ground state, although characterized
by a single value of & do not have axially syra-
metric deformation. This is because the relative
motion of protons and neutrons is simultaneously
localized around the E and q axes. Were the mo-
tion localized only around a single axis, axial
symmetry would be approximately retained be-
cause of the small value of 8,. As an effect of
this symmetry breaking the intrinsic quadrupole
moment of the whole nucleus in its ground state
is one-half of the value we would obtain if axial
symmetry were preserved.

In view of the above considerations we think
that a detailed microscopic analysis of our mod-
el would be highly desirable. A microscopic cal-
culation' based on the vibrating potential model
predicts a state which could be interpreted as a
rotational oscillation. In such a calculation, how-
ever, axial symmetry is assumed.
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