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tribution due to spin-orbit coupling. The tendency to
greater than linear behavior at higher fields is due to
the variation of p q&(B) in the denominator of (2) and is
thus an artifact of the inversion between p2i(B) and

g2&(B). For alloys less concentrated than 5 at %%u,. Fe
the uncertainty in the extrapolation is large, giving a
less accurate Qg2~.
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The sign of the side-jump and skew contributions can

be different since asymmetric skew terms appear in
lowest order only in the second Born approximation
(Ref. 3), whereas the side-jurnp terms appear in the
first (Ref. 5). Thus if we take a simple scattering po-
tential of the form V+X f c, where V represents the
upset in the host's periodic potential and g is the cou-
pling constant between the electron's orbital momen-
tum l and the ion's spin g, the lowest-order terms in
the second approximation are of the form -A, V for
I «V (Appendix A of Ref, 3) while the first-order
terms are of the form -A.V'. Hence the sign of the side-
jump term depends on that of V whereas that of the
skew term does not.
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Results of quantitative high-resolution absorption measurements in the range of the
ge A„~Z&+ and a 0& X Z + derived exciton progressions in solid N~ are reported.
The newly observed detailed fine structure of the vibrational bands is analyzed in terms
of a sharp zero-phonon line and phonon-assisted exciton transitions. A theoretical analy-
sis based on a strong-exciton-phonon-coupling model leads to good agreement with the
observed experimental line shape.

The electronic structure of simple molecular
crystals such as solid nitrogen and carbon mon-
oxide has attracted much interest because of
their key role for a better understanding of ex-

citon states in @weakly bound van der %aals solids.
The absorption spectra of solid CO and N, provid-
ed the first examples for the perturba. tion of the
excited electronic states of simple molecules by
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the crystal field. " However, almost no quantita-
tive information has been obtained experimentally
on other important features of the absorption. In
particular, the line shape of the bands has never
been analyzed, although a detailed understanding
of the coupling of exciton states to the crystal
might be expected and a number of calculations
and predictions for the exciton-phonon coupling
in vibrating molecular crystals are available in
the literature. ' '

Recently, high-resolution low-temperature
vacuum-ultraviolet spectroscopy' "has provid-
ed new ways for examining higher excited states
of van der Waals solids, such as surface excitons
in rare-gas solids" and vibrational and libration-
al excitations of matrix-isolated molecules. ' In
the present work we apply these techniques to the
investigation of exciton transitions in pure solid
nitrogen. A careful examination and analysis of
the exciton absorption line shapes for two weak
transitions forming extended progressions in the
spectral range from 8.5 to 12.5 eV vill be pre-
sented. On of the important results of our study
is the detection of extremely sharp [full width at
half maximum (FWHM)( 1 meV] zero-phonon
lines (ZPL) and accompanying phonon sidebands
for each vibrational sub-band of an electronic ex-
citation.

The experiments have been performed with two
different monochromators. By using the 10-m
spectrograph' located at Meudon, France, we
have recorded the spectra at a high resolution of

0.014 A in first order. The spectrograph was il-
luminated with a BRV continuum source and cal-
ibrated with atomic emission lines. Data obtained
with this instrument have been mainly used for
establishing accurate energy positions of the
bands. Quantitative intensity measur ements have
been performed at a resolution of 0.15 A with 3-
m normal-incidence monochromator with synchro-
tron radiation from the DORIS storage ring at
DESY, Germany. " This instrument was calibrat-
ed by rare-gas absorption lines. Light from the
exit slit traversed a film of solid N, condensed on
a LiF window, the temperature of which ranged
from 6 to 35 K. These experiments were carried
out under ultrahigh-vacuum conditions (P = 5
x 10 "Torr). The transmitted light was detected
by a sodium salycilate photomultiplier (EMI 9804)
combination. The sample gas was nitrogen of
A 52 grade from Air Liquide. Its purity was
checked during condensation by a mass spectrom-
eter. More details will be given in a forthcoming
paper. "

A general view of the absorption of solid N, in
the range of the a'II -X'Z ' andgr'~ -&'g +

transitions is shown in Fig. 1. Whereas the a
system forms a progression of fairly broad bands,
the stronger zv system forms a progression of
comparatively sharp bands. Both transitions are
electrically dipole forbidden in the gaseous
phase. " They become partly allowed in the low-
er symmetry of the excited molecular state in
the crystal. The symmetry of the free N, mol-
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FIG. 1. Overview of the absorption spectrum from solid nitrogen in the photon energy range from 8.5 to j.2.8 eV.

The two progressions corresponding to the gas phase a~II —X Z + and zg ~ X~X + transitions are labeled. Note8 8. " 8that we have chosen the zero-phonon features at the low-energy sides of the bands as the origins.
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ecule (D„„)is reduced to the site symmetry
group (C„) in the e phase of solid N, . (This is
the low-temperature cubic phase for T & 35.6
K.") Thus one would expect an E -Ag and an
E„-A transition corresponding to the a and zo

systems, respectively. Consideration of the fac-
tor group 7'„of the molecular crystal yields a
splitting of the a'H

g
final state into one E and

two I'
&

components and of the zv'4„state into one
E„and two I'„components. Consequently the g- g transitions remain electrically forbidden in
the crystal, whereas transitions to I"„final states
become allowed. This implies that the se'4„- 'Z '
transition becomes dipole allowed, whereas the
mechanism for the weaker a'll -X'Z ' transition

8
is magnetic dipole and electric quadrupole as in
the gas phase. We note, however, already at this
point, that our results do not show a factor-group
splitting. As can be seen from Fig. 1 and Table
I, both progressions have an extremely small
oscillator strength even in the crystal. Compari-
son of the constants derived from a polynomial
fit to the progressions with those known for the
corresponding transitions in the gaseous phase
shows that both are very similar. Thus, e.g. ,
the quanta of the intramolecular vibration for the
a system are 208 meV (Ref. 13) and 205 meV in
the gaseous and solid phases, respectively. So-
lidification leads to an almost rigid shift of rough-
ly 50 meV of all bands towards lower energies.

Compared to previous results' our data show a
far more detailed fine structure of the various
bands. As an example we show in Fig. 2 the
range of the e'=0 band of the zv'~„system and
the v' = 2 band of the a'0

g
system. Although both

bands are quite different in their general appear-
ance we note that they show as a common feature
a very sharp line at the low-energy side followed
by broader partly structured features towards
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FIG. 2. Absorption spectrum of solid N2 at 6 K in the
range 8.88 to 8.98 eV. For the v' =2 band of the a~7t.

gsystem the second derivative is also shown.

higher energies. As shown by the second deriva-
tive of the v' = 2 band these features are very
similar for both systems as far as the spacings
are concerned (see also Table I).

The splitting of the bands of the a system has
been discussed as a Davydov splitting by Brith
and Schnepp. ' We reject this interpretation since
the observed detailed structure with its constant
splitting over the progression is not compatible
with a simple Davydov splitting into two compo-
nents. Instead of such an explanation, which is
applicable in a weak-exciton-phonon-coupling
case, we propose an analysis for the fine struc-
ture based on a polaron model' with strong ex-
citon-phonon coupling. "'"

Within this model we interpret the sharp max-
imum appearing on the low-energy side of each
vibrational band as the ZPL. The electronic ex-
citation leads to a strong localized deformation
of the crystal. The features at higher energies
correspond to the coupling of the electronic ex-
citation to lattice modes in the deformed potential
at this site. For the v' = 0 band of the zo system
we can readily identify several phonon sidebands

TABLE I. Excitation energies (in eV) for the zero-phonon lines (ZPL) in solid N2 for the a~0 and the zy&„pro-
gressions for v' (6 and energetic positions of the phonon-induced fine structure with respect to the ZPL. For each
vibrational band the oscillator strength f is given. Positions of the ZPL for the a system given in parentheses
have been estimated.

ZPL
(eV)

aII XZ +
8

ZPL
(meV) (me V) (me V) (meV) 10f (eV) (meV)

~XZ
U g

(me V) (me V) (me V) (meV) 10f
0 8.496
1 8.701
2 8.908
3 9.106
4 (9.S05)
5 (9.502)

2.6

4.5
4.5
5.8
5.4

8.6
8.6
8.7

10.2

~ ~ ~

12.0
12.4
11.6

2.7
8.1

11.8
1$.8
13.4
10.4

8.885
9.026
9.214
9.398
9.580
9.760

4.0
3.4

~ 0 ~

5.7
5.7
5.6
6.6
5.8
5.8

9.0
8.6

9.0

108
1-1.0
11.6
12.0
1-2.0
11.4

14.8 0.3
1.4
8.7
6.8
9.4

10.8
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FIG. S. Simulated line shape of the g' = 0 band of the
X Z + system at T = 0 with a coupling strength

of $=2.2. For details see text.

corresponding to the excitation of one or more
phonons. Their energies are listed in Table I to-
gether with data for the higher vibrational bands
of this as well as for the aII progression.

To further substantiate this analysis we have
performed calculations for 0-K temperature
which are based on a local picture treating the
lattice dynamics in a "supermolecule model, "'
in which only a few shells around the excited mol-
ecule are allowed to participate in the nuclear
motions. In the calculations the following assump-
tions have been made"'": (i) The exciton-phonon
coupling is linear in its external coordinates;
(ii) the external oscillators are harmonic; and
(iii) only one translational &or and one librational
w~ mode, both having g symmetry in the site
group of the excited molecule' are coupled to the
exciton state. In order to simulate the experi-
mental curve, the one-phonon shape was chosen
to be doubly peaked at ~~ = 5.9 meV and col. = 3.7
meV. These frequencies are close to the known
k = 0 values of the librational and the translation-
al modes of the vibrating N, crystal as observed
by Raman and infrared spectroscopy. ' The
higher phonon sideband was obtained by convolut-
ing the one-phonon band k times with itself and
weighting with a Poisson distribution of the fol-
lowing form" ":P, =S"e /k!, where S is the
coupling strength, " and e represents the ratio
of the ZPL intensity to the integrated intensity of
the entire band. The result of this calculation
with a value of 8=2.2 is shown for the v'=0 band
of these system in Fig. 3. The agreement with

the experimental results is very good, thus ver-
ifying t ur analysis of the shoulder at around 4.0
meV above the ZPL as a librational mode of the
excited N, molecules and the mode with +~~ 5.7
meV as the translational mode of the vibrating
N, crystal. Although apparently the same modes
are excited in the to and in the a systems (see
Table I), the coupling strength for the a system
is much greater, leading to an enhancement of
the multiphonon processes.
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