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Here, y is the electrostatic potential of the drift
wave. The number density is given by the elec-
tron density as a result of the quasineutrality
condition:

where T, is the electron temperature and the
contribution from the Landau pole due to the elec-
tron parallel motion is ignored by assuming a
saturated state. The vorticity 0 is obtained from
Eq. (3),

(5)

If we substitute Eqs. (4) and (5) into (I), we ob-
tain the following exact simple nonlinear equation
for the drift-wave turbulence':

8(v'y- y)/st+[(v~xz) v](lnno —v y) =0, (6)

The spectrum cascade by mode coupling in drift-wave turbulence occurs to larger and
smaller values of ( k~ rather than toward lower frequencies. This leads to the dual cas-
cade process; energy cascades to smaller h while enstrophy (square of the vorticity) cas-
cades to larger &, analogous to two-dimensional hydrodynamic turbulence. However,
the speed of energy condensation to k =0 is much slower than in the hydrodynamic case.

In this Letter, we show that the spectrum cas- where the leading term in v~ is given by the E
cade by mode coupling in drift-wave turbulence XB drift,
occurs to longer and shorter wavelengths, and
that it leads to the dual cascade process where
the energy cascades to smaller k, while the en-
tropy cascades to larger k, analogous to two-
dimensional hydrodynamic turbulence. ' This re-
sult originates from an intrinsic property of the
drift wave in which the linear frequency and the
amplitude can be small parameters of the same
magnitude.

For wave-wave interactions in drift-wave turbu-
lence the largest coupling occurs through the E
~B nonlinearity. .This allows us to ignore the
parallel ion inertia. The best way of deriving the
nonlinear equation in such a case is to use the 0= jv'yj/ B,.vortex equation for the ion dynamics. ' If we
make the assumption of cold ions, the equation
for the vorticity Q=(v~&&%~) s can be derived
by taking the curl of the ion equation of motion
and by using v~ v ~= dlnn/dt:-

cl 0

where m„. is the ion cyclotron frequen "y, n is the
number density, and v~ is the ion velocity in the
direction perpendicular to the ambient magnetic
field B~. The total derivative includes the con-
vective derivative,

d—=—+(v v) (2)
dI Bt

where the time and space coordinates are nor-
malized by ~„'and p, = (T, /m, )'~'/~„and the
potential y by 7, /e.

To find the dt.rection of the spectrum cascade
in Eq. (6), we consider three waves with the
wave numbers k„k„and k, such that k, +k, +k,
=0. If we write

y(x, t ) = y&(t ) exp(ik ~ x) + c.c. ,
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the coupled equations obtained from Eq. (6) are

dA/dt+3(u, g, = A, , %3*%*,

dV'3/dt+ 3~30'3 —~3
~ 3 P3* 9'i* ~

d A/dt+ 3~30'3 —Ai, 3 0'a*A*
~

(8)

(9)

where the superscript asterisk indicates the com-
plex conjugates;

y, (f ) = y-„(t), j= 1, 2, 3; (10)

k~x g gl
1 +

A, „'=(1+k,')-'(k, xk„) z(k„'-l'3, ').
Note here that typically cu, =10 ', hence if y,
~ 10 ', we cannot use the standard method of
weak turbulence. "

(12)

The direction of the spectrum cascade may be
found by studying the stability of a situation in
which one of the modes, 1, 2, or 3, is more high-
ly populated than the others. For this purpose
we first assume without loss of generality that

k, -=Ik, I
such that

k~ «k2 «k3. (13)

We first consider a case in which the mode k, is
highly populated so that

I y3 I
»

I p3 I, I q'3I-. We
can then linearize Eqs. (7) to (9), from which we
have

and

y, =A, exp( ia, t),—A, = const,

dA, /dt= Aa 3'A3*A3*e 'e',

dA, /dt = A, ,'A, *A,*e '

(8')

with

is the normalized drift wave frequency, ~ k +/&u„;
and the matrix element A, „ is given by

of the quantities k,' —k3' and k,' —k, ' are negative
(or zero) in Eq. (12), while from Fig. 1 we see
that (k, x k, ) z and (k, &&k,) z have the same sign
(if not zero). Hence A, , 'A, ~,

' ~ 0 and this situa-
tion can be unstable.

On the other hand, since A, ,'A, ,3 and A, ,'A, ,'
are always negative (or zero), if modes 1 or 3
are highly populated, then the system is stable.
Hence we conclude that the spectrum cascades
by simultaneously exciting both shorter- and
longer-wavelength modes, and the direction is
independent of the magnitude of the linear fre-
quencies ~„co„and ~3 of the three waves.

This interesting result originates from the fact
that the matrix elements A do not involve ~,
while in many weak-turbulence cases, A of the
highest-frequency mode has a sign which is dif-
ferent from the other two lower-frequency
modes. " Instead of the highest-frequency mode,
in our case the mode with the magnitude of wave
number in betuee& those of the two other wave
numbers has the sign of A different from the
others.

We note here, however, that this situation
does not allow an excitation of a mode with a fre-
quency higher than co» because even if cu, or ~3
were larger than u„ it can be shown that the
nonlinearly shifted frequency, ~, —8/2, j= 1, 3
[which one can obtain from Eqs. (7') and (9')],
at the threshold amplitude

I y, I can be shown to
become always smaller than or equal to ~,.

It is possible to obtain the values of k, and k3
that produce the maximum growth rate. The
maximum growth occurs when the product
A2 3 A $ ~ 2 is maxi mi zed. From the cross -product
part of Eq. (12), we see first that the angle be-
tween k, and k, is m/2 as shown in Fig. 1. The
magnitude of k, and k, that maximizes the product
has a complex expression, but if k, «1, we have

y,. -=A, (t) exp(-i(u, t), j= 1, 3, (14)

0=m, +W +A@3 (15) Kq

is the frequency mismatch.
From Eqs. (7') and (9'), we find easily that the

instability (exponential growth of A, and A3) oc-
curs when

0'-4A, , 'A, ~,'IA, I'&o. (16)

Inequality (16) shows that the stability is decided
by the sign of the product h, 3' A»3.

Now, in view of the assumed relation (13), both

Kp

FIG. 1. Two types of available wave-vector-matching
condition for &&& &~& ~3. Both cases give a positive pro-
duct A3 3 Ag 3 leading to instability if

I p3I »
I q 3I. The spectrum casoade occurs simultaneously in
the direction of smaller and larger values of wave vec-
tor.
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the following simple relation: 1.0--

1, max

2 ~,~ 2
3 ~ mBx 3

(17)

N, —N1 =const,

N, +N, = const, (1S)

If we use k, ,„and k, ,„, we can obtain the
ratio of energy which is cascaded into wave num-
bers smaller than k, to that into wave numbers
larger than k,. To study this, we first derive
the conservation formulas of the equivalent quan-
tum of the three modes, N„N„and N„defined
by

&,=(1+k, ') I y, I'/lk, '-k, 'I, k, '~k„'. (18)

From Eqs. (7) to (9), we find

2/3
I
I
I

I

I
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I
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I

I
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and

2 k 2
2 1EW3
3 1

(20)

At the maximum growth, AR', = 3 and b, Q'3 3
The energy cascades according to the binomial
distribution, („")(k,~/k, ')"(1 —k,~/k, ')" "as shown
in Fig. 2. By summing up all the energy cas-
caded into k' & k, ' (k' & k, '), we can obtain the
energy which is down (up) shifted in wave number.
In this case the ratio of the down- to up-shifted
energy approaches approximately 80% to 20% at
n= 12.

We can apjaly a similar argument to the gen-
eralized enstrophy, ' U= k'(1+ k')

I q -
I
'. We find

that the cascase in Uis reversed. The ratio of
down-shifted U to up-shifted U approaches ap-
proximately 20% to 80% a,t n = 12.

These ratios change when the initial value of k2
is larger because k, ,„' given in Eq. (17) breaks
down and we must consider a nonlocal transfer
problem. ' By repeating the cascade process at
large n and by setting an appropriate inertia
range, one can obtain the stationary energy spec-
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N, +N, = const,

These relations show that a loss of one quantum
in N, appears as a gain of one quantum in N, and
N3 respective ly .

Now the energy W of the k mode is given by'
W= I q-„.l'(1+k'). Hence, from Eqs. (18) and (19),
we see that the fractional energy gains by modes
1 and 3, AW, and AW„corresponding to a loss
of energy of mode 2, AW2=1, are given by

k, ' —k,'
1 k2 k2

3 1

FIG. 2. Cascade of energy from the mode 4&. The
amount of energy at each step is shown by the size of
the vertical bar and the corresponding value of k~/kP
is shown at the foot of the bar. Only three steps are
shown for illustrative purposes. To find the final ratio
of down- to up-shifted energy, one should go on to sev-
eral more steps. The cascaded energy obeys the bino-
mial distribution.

trum. The unidirectional energy spectrum thus
obtained has a power law of k 4. The details will
be published elsewhere. '

The spectrum cascade into longer and shorter
wavelengths is analogous to the case of two-di-
mensional hydrodynamic turbulence for an in-
compressible fluid. ' In fact the two-dimensional
Euler's equation for an incompressible fluid can
be described by the stream function g satisfying

Bv'q/&t [(vgxz) ~ v—] v'jj =0. (21)

The matrix element is identical to our situation
if 1+k~' is replaced by k~' in Eq. (12). Hence
our method can also be applied to Eq. (21). We
find that the maximum growth occurs at k, '=(v2
—1)k,', and at n=12, 90% of energy is cascaded
down in k. Hence the inverse cascade rate of the
drift-wave turbulence is smaller than that of the
two-dimensional Navier-Stokes turbulence.

Our conclusion that the spectrum cascade in
the drift-wave turbulence is of the hydrodynamic
type rather than the weak-turbulence type has
important implications. For example, the weak-
turbulence theory based on nonlinear Landau
damping predicts that k e (k& Vn, ) should always
decrease (to lower the frequency) and transfer in
k„should be immaterial. "However, the obser-
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vation of the production of large-scale vortices
in computer simulations' of drift-wave turbulence
contradicts such a notion. It can be explained in
terms of the present theory that predicts isotrop-
ic cascading into smaller wave numbers. The
condensation of energy at k -0 indicates a forma-
tion of large-scale vortices. This supports the
convection process rather than diffusion process
as the basic transport mechanism of a magnetized
plasma.

Finally, we briefly discuss the effect of a mag-
netic shear. In the presence of a magnetic shear,
Eq. (6) is valid only in a limited region near the
mode rational surface. Within a Debye length
from the mode rational surface k B, =0; hence
the electrons do not obey the Boltzmann distribu-
tion as assumed here. Away from this region,
the equation is valid until k „ increases to the
point where k

~,u, h, /cu„=yn (v, h, is the ion therm-
al speed, k

~~
is the parallel wave number, and y„

=k'~ y ~
is the decay rate). Here the parallel ion

inertia becomes important and the two-dimen-
sionality assumption breaks down. This occurs
typically at a distance of 5p, from the mode ra-
tional surface. Hence in the presence of a mag-
netic shear the inverse cascade occurs until k,
-(5p, ) ', at which point the energy may be dissi-
pated to the parallel motion of the ions.
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After the submission of the manuscript, one of
the authors (A.H. ) learned that the evidence of
inverse cascade of energy was also found by the
numerical solution of Eq. (6) without the density
gradient term
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The apparent incompatibility between a "spinning" texture in the bulk and the boundary
condition at the surface is shown to be unreal. Topological arguments are used to show
that this "incompatibility" can always be eliminated in both open and closed containers
by appropriate textural arrangements. The "spinning" process in the bulk corresponds
to a continuous nucleation of vortex rings. In an open geometry, these rings will flow
downstream along the heat current. In a closed container, they will be devoured entirely
by stationary singular loops at the surface.

Since the observation of the persistent oscilla-
tion in the intensity of ultrasound transmission in
'He-A ' which indicates that there are periodic
motions of the texture l, three mechanisms have
been proposed to explain this phenomenon. All

of them involve motions of textures driven by a
heat flow —which can be considered as related to
a chemical-potential gradient. These mechanisms
are as follows: (i) formation of vortex textures
and their continuous motions across the chemical-
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