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Dynamics of the Sine-Gordon Chain
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Using a molecular-dynamics technique, we studied some noneguilibrium properties of
the sine-Gordon chain in one space dimension. We found a t4 long-time tail in the
mean-square displacement, and self-diffusion is traced back to the motion of kink soli-
tons. It is shown that the propagation of these kinks gives rise to a new excitation branch.

The recent interest in solitons~specially in connection with statistical mechanics and condensed-
matter physics' '—makes it desirable to study the classical nonequilibrium properties of systems
evolving according to such a prominent equation as the ubiquitous sine-Gordon equation. The purpose
of this Letter is to report molecular-dynamics results of a classical sine-Gordon chain in one space
dimension. Under the mechanical analogy, the system is defined by the Hamiltonian

Here i labels the particles which have mass M, while MX~ and X; denote the corresponding momenta
and displacements. M, A, C, and qo are parameters. We assume periodic boundary conditions so that
X))(+,-X,. In the continuum limit, Eq. (1) reduces to the sine-Gordon Hamiltonian

K= fIIdX, (2)

Mf Q~Q Bf 2

H = +A(l- cosqg)+
2 ~x

where f denotes the displacement field.
The ubiquitous role of the sine-Gordon system in condensed-matter physics derives from the variety

of physical situations appearing with a periodic local potential. Examples now include one-dimension-
al ferromagnets with planar anisotropy, "pinned charge-density waves, ' incommensurate phases, '
and superionic conductors. ' To study the relevant statistical equilibrium properties one might use
the transfer-integral technique. For nonequilibrium properties such as time-dependent correlation
functions and spectral densities, however, we are not aware of any method providing exact results.
Such correlation functions are (a) the time-dependent mean-square displacement,

(4)

and (b) the wave-number- and time-dependent density correlation function,

s ,p(q, t) =
~

'8, exp( iqx; (t)] 5 exp( —iqx; (o)l ),
1 1
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where () denotes a canonical ensemble average.
To study such correlation functions, we used a

molecular-dynamics technique simulating a ca-
nonical ensemble. In doing so, we assume that
the particles suffer collisions with much lighter
ones, representing the heat bath. The collisions
are denoted by a friction —FMX; and a random
force with properties

v,p)) C /k BI"))&„ (8)

where w, is a characteristic time of the dynamics
and C~ the isothermal specific heat. The right-
hand inequality also guarantees that the motions
of interest do not become overdamped because of
the friction term. For a more detailed descrip-
tion of the algorithm and the random-force gener-
ation, we refer to Schneider and Stoll. '

Using this molecular-dynamics technique we
considered a system of 1000 particles subjected
to periodic boundary conditions. The model pa-
rameters of Hamiltonian (1) were chosen as

M= 1, A =1, C= 2922,

T denoting the temperature of the bath. The as-
sociated equations of motion are then coupled
Langevin equations

Mx, = -sx/sx, . -rMx, +q, (t).

The stationary solution of the associated Fokker-
Planck equation is the canonical distribution func-
tion.

It is clear that the nonequilibrium properties
will be affected by the damping term and the ran-
dom force in Eq. (7). In particular, the energy
i.s not conserved because the Hamiltonian system
is in contact with the heat bath. Nevertheless, by
an appropriate choice of r and the chain length,
7+, over which the evolution of the system is fol-
lowed, energy can be almost conserved. This
choice requires

where

x(q) =N "'5 x,e'"' (12)

At small wave vectors and much lower frequen-
cies where we enter the hydhodynanzic regime,
we also expect the conservation laws and the
large-amplitude motions to become important.
Another interesting feature is the fact the the
variable X(q) [Eq. (12)], which is not conserved,
has static correlations of infinite range, i.e., that

( i X(q) i
') = n/2 (1—co sqa)

-n/(qa)' as q-0,
(13)

as may be derived with the aid of the transfer-
integral technique. ' e depends on the model pa-
rameters and on temperature and vanishes at T
= 0. Equation (13) implies that

(1/x)5, (ix(q)i') =(x,') = (14)

Accordingly, the particles are not localized and
self-diffusion will take place for T & 0. However,
the implications of the conservation laws are not
obvious because linearized hydrodynamics does
not exist at or below two space dimensions be-
cause of long-time tails of time correlation func-
tions o

To explore the long-time tails, we calculated
the time dependence of the mean-square displace-
ment [Eq. (4)]. The second time derivative is re-
lated to the velocity autocorrelation function by

kink in the continuum limit. '
Before discussing the numerical results, it is

helpful to summarize those features of the dy-
namic properties that might be expected on gen-
eral grounds. We expect phononlike small-ampli-
tude and solitonlike large-amplitude motions.
The frequency &u~(q) of the phonon branch is ex-
pected to be given by"

(x(- q)x(q))
(X(- )X( ))

=A(cosX, ) + 2C(1- cosqa), (11)

qo= —,a=2m, k&T=20.86, 12.5, 8.92.
2m

a'
p ([x;(t) -x;(0)]')=2(x;(t)x, (o)). (15)

Here, we have adopted the same units as in earli-
er work. " This choice describes CsNiF, (Ref. 5)
and results in a regime where solitons are ex-
pected to be important. This regime is defined
by'

C))A, Eo= 8(AC)+ = 43.24)) kB T&

where Eo is the rest energy of the sine-Gordon

The results are shown in Fig. 1. For compari-
son we include the power law t+' which was ob-
tained for Burger's equation, "and mode-mode
coupling considerations" in a one-dimensional
Quid. Our data are consistent with this power
law. We also note that a t law leads to a less
satisfactory agreement. This result implies that
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FIG. 1. Calculated time dependence of the mean-
square displacement at kB T =8.92 and 12.5 for I' =0.004;
solid lines denote numerical results and dashed lines
denote -t 4~3 power lm.

the self-diffusion coefficient does not exist. In-
cluding the temperature dependence we find con-
sistency with the relation

([X,(f) -X,.(O)]')

(16)

revealing that in the regime considered here [Eq.
(10)], self-diffusion is governed by moving kinks
and antikinks. To explore the relevance of ener-
gy conservation on the long-time tail, we also
performed a calculation for I' =4. The results
for ([X;(&)-X;(0))') are again consistent with the
t~' power law, which indicates that the presence,
or absence, of energy conservation does not af-
fect the long-time tail.

To analyze the excitation spectrum, we calcu-
lated

s»(q, ~) = f „s»(q, t)e*"u/s»(q, o). (17)

The density correlation function S»(q, t) is de-
fined in Eq. (5). The results, shown in Fig. 2,
reveal that the spectral density is dominated by a
low-frequency excitation branch having for qa/w

~ 0.002 a linear dispersion,

k = Cyg.'e

At higher frequencies, there is an additional weak
resonance which we attribute to small-amplitude
phononlike motions, because the peak position is
consistent with Eq. (11), where (cosX;) = 0.35 at
kBT = 12.5. Bearing in mind that self-diffusion
has been traced back to the motion of sine-Gor-
don kinks, one might expect that these large-
amplitude motions are also responsible for the
low-frequency excitation branch in Fig. 2. To
substantiate this conjecture, we also calculated
the time evolution of kink patterns. For this pur-
pose, the particles passing a maximum of the lo-
cal potential [Eq. (1)] have been marked with dots.
Any such passage corresponds to a kink or anti-
kink. In Fig. 3, we show the time evolution of the
resulting kink patterns for k& 1'= 12.5. This plot
demonstrates the occurrence of kinks and anti-
kinks. Another important feature is that they
propagate with a finite lifetime and a velocity C„
where C~ is distributed around C~ =+4a. This
value agrees with the group velocity of the 1ow-
frequnecy excitation branch (4a, Fig. 2). From
these results, one is naturally led to the conclu-
sion that the new, low-frequency excitation branch
in Fig. 2 is due to propagating kinks and anti-
kinks. The double-peak structure of the velocity
distribution function may be qualitatively under-
stood in terms of a relativistic Boltzmann gas."
The light velocity corresponds here to Co'= Ca'
and the mass to the kink rest mass. On this ba-
sis, it becomes clear that the new excitation
branch is associated with the conservation law re-
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FIG 2 Spp{q, u) at kB T = 12.5 for I' =0.004 and fixed
reduced wave numbers qa/~, where a =2m.
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FIG. 3. Time evolution of kink patterns at &B T =12.5;
I labels the particles and t denotes time. Black dots
mark particles passing a maximum of the local poten-
tial. Any such passage corresponds to a kink or anti-
kink.
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suiting from the Lorentz invariance of Hamiltoni-
an (2). The relevant conserved variable is

G(X, t) =tlf sf/sX+ (M/Co )XII. (19)

Provided that the resulting hydrodynamic mode
is propagating and well defined, its frequency
can be estimated to be

s G(q, 0)/a ql'&/( I sa(q, 0)/s ql'&c,'
= (qa/m)4(~X(q) ~')v C'(1/kBT),

leading to v„= 0;030 for kBT= 12.5 and qa/m = 1/
500, where (~ X(q) P) = 8.5 &&10'. This estimate
agrees with the corresponding low-frequency
peak position in Fig. 2.

To summarize, we have shown that the non-
equilibrium properties of the one-dimensional
sine-Gordon chain are rather rich. Our results
for the mean-square displacement revealed a t~'
long-time tail. Moreover, at low temperatures
and strong coupling [Eq. (10)J, the self-diffusion
was traced back to the motion of sine-Gordon
kinks and antikinks. In this regime, we also
found a new excitation branch due to propagating
kinks. Our results also substantiate the interpre-
tation of the low-frequency structure observed in
the inelastic neutron-scattering spectrum of the
one-dimensional ferromagnet CsNiF„as the re-
sult of sine-Gordon kinks. ' However, high-reso-
lution measurements would be needed to resolve
the propagating nature of the kinks implied by

our results.
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