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and 3 modes, and the combination I = 3 and yg = 2
has been detected. ' In addition, in PLT' althoughI = 2 precursor oscillations are observed, the
disruption itself often exhibits poloidal asymme-
try, presumably corresponding to the generation
of odd poloidal mode numbers. Finally, during
the disruption ~ = 1 oscillations are often ob-
served within the plasma core; this observation
might correspond to the generation of the ~ = j.
mode described here.

The most important feature of the major dis-
ruption that any model must explain is the rapid
time scale. For the mechanism described here,
the characteristic time scale for the development
of the magnetic islands is the width of the peak in
the 3/2 growth rate. If we define the half-width I'
by y»(t" + I') —y» = Ay/2, then I' = (y2, ) . As-
suming that the scaling does hold for all values
of S, we find that in PLT the predicted value for
the disruption time is 230 psec. If the effect of
diamagnetic drifts is included in the expression
for y»', then I =440 @sec. These time scales
are consistent with the observed disruption time
of 500 psec. A study of several other machines,
including I T-3 and TOSCA for which the preced-
ing analysis rigorously applies as far as the mag-
nitude of the resistivity is concerned, also shows
consistency with the observed disruption time
(approximateiy 10 psec).
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It is shown that in monolayer superfluid He films, in addition to third-sound modes,
small amplitude effects can lead to the existence of gapless solitons made up of super-
fluid condensate. These nonlinear excitations can be created by localized perturbations
in the superfluid density. The conditions are studied under which such initial disturbance
evolves into an ordered string of solitons, and the differences to be expected in thicker
films are discussed.

Third-sound pheriomena in helium films have
provided a wealth of information on the proper-
ties of nearly two-dimensional superfluids. '

Originally proposed by Atkins' as the superQuid
analog of surface waves, they soon became a pre-
cise tool for examining the critical behavior of
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the superQuid density in monolayer films. ' The
most spectacular result that has recently emerged
from these studies is the confirmation of the uni-
versal discontinuous jump in p, at 7.', for two-
dimensional super fluids. '

Interesting in themselves, third-sound excita-
tions have been investigated with great accur-
acy in monolayer films by Rutledge eI al. ' In
these two-dimensional superfluids, where film
thickness and healing length lose their meaning,
they found positive dispersion for the surface
modes, together with a roton branch that be-
comes excited above 0.6'K. The dispersion re-
lation and temperature dependence of these modes
was then derived in the linear regime by using a
two-dimensional formulation of Landau's quantum
hydrodynamics, the proper approach when deal-
ing with such thin and inhomogeneous films.

Several experiments on third-sound propaga-
tion, however, have revealed finite amplitude ef-
fects that cannot be explained in terms of the lin-
earized theory. Specifically, it has been reported
that in some instances incipient shock behavior
develops as the superQuid velocity amplitude in-
creases, ' whereas in monolayer films undistorted
pulse propagation has been observed at very low
temperatures. ' These effects point to the need
for extending the above theories in order to in-
clude finite amplitude effects and to explore the
possibility of novel nonlinear phenomena. taking

place in superfluid films.
In this Letter it is pointed out that in He films,

in addition to third-sound modes, small finite
amplitude effects can lead to the existence of gap-
less solitons made up of superQuid condensate.
These nonlinear excitations propagate with a ve-
locity proportional to their amplitude and can be
copiously created in, experiments where the driv-
ing perturbation is localized to a small region of
the film. Using inverse-scattering techniques,
I study the conditions under which an initial dis-
turbance will evolve into an ordered string of
solitons, and discuss the differences to be ex-
pected as the film thickness increases.

Ordinary third-sound modes are obtained from
a linearized study of the equations of motion for
superQuid films. ' For monolayer films, where
both the bulk superfluid density and the thickness
are fuzzy concepts, the appropriate formulation
has been developed by Rutledge eI' aE.' Consider
a two-dimensional superQuid 3t temperatures
low enough so that the losses to the vapor and
substrate can be neglected. The superfluid sur-
face density P, (P) is related to a complex order
parameter Ig(P) I via P', (r) = I g(r) I'. The energy
is then written as a sum of terms involving the
kinetic energy, the van der Walls forces acting
on the film, the chemical potential, and the sur-
face energy arising from spatial fluctuations in

~s~ &.e.~

k2
V +, 2

—PP +2B+P
2m 2(a~@, '

where m is the mass of the helium atom A and a are constants related to the v3n der Waals energy
g= 14'K and a= 1.2 atomic layers), p is the chemical potential, and B is the surface energy in the
thick-film limit. The equation of motion for the order parameter, ih Bg/&t =&H/g, then becomes

8$ 52
2 Aik = — V'(—,—, tj y Bq-v' I pi'. -

et 2m (a+ I&I')' (2)

&u =C 2k2 k (k 4BP',om/4m2), (3)

where the first term corresponds to the ordinary
dispersionless third-sound modes with an adia-
batic velocity given by

By neglect of nonlinear terms, the amplitude and

phase fluctuations in g away from the ground
state value, g» determine the behavior of the
surface density eaves. They correspond to os-
cillations of the superfluid density p„accompan-
ied by temperature waves, while the normal com-
ponent of the superQuid remains at rest. The dis-
persion relation is given in the 7.'-0 limit by

and the second term comprises both the surface
energy and the single-particle excitations.

In order to go beyond this linearized theory and
to incorporate finite amplitude effects, we can
proceed in a heuristic fashion. The positive dis-
persion relation given by Eq. (3) implies tha. t in
two-dimensional superfluids the phase velocity
behaves, for small k, as

V —Cs(1+k /ko ),

with ko given by

C,' = 3AP, '/m (a+@,')', (4) k,' = Sm'C, '/(a', 4BmP, )
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which experimentally is observed to have a value
k0-=o.5 A '. Consider now excitations of the film
propagating along the X axis parallel to the sub-
strate. In a coordinate system moving to the left
with velocity C„Eq. (5) implies that the frequen-
cy of the waves is given by a& = C,k'/ko'. We can
therefore write for the surface superQuid den-
sity fluctuations p, (x, t) the linear differential
equation'

~p, C, ~3p,
gg +y2 p 3

0

whose solutions are plane waves with phase ve-
locity given by C,k'/ko2, in agreement with Eq.
(6).

Finite amplitude effects' can be incorporated
into Eq. (7) by writing to lowest order in p, the
following nonlinear differential equation":

sp. C, sp, C, 8'p,
Bt k ' ex k ~x

In the absence of boundary conditions, the solu-
tions of this equation were found by Korteweg and

de Vries. " They correspond to plane waves mov-
ing with velocity C, (ordinary third sound) plus a
soliton mode given by

p, =A sech'[(x —Ct)/b ], (9)

o & o0 this perturbation has a very small ampli-
tude and can be regarded as almost linear. No-
tice, however, that the crossover from nonlinear
third-sound to superfluid soliton behavior oc-
curs continuously as a function of o.

Let us now look into possible mechanisms
through which well-defined solitons can be gen-
erated by externally perturbing a helium film.
Consider an initially localized change in the su-
perfluid surface density. Its time development
can be understood qualitatively by considering
Eq. (8). For very short times the first two terms
of the nonlinear equation dominate and the per-
turbation will steepen in the regions where it has
a negative slope. Were it not for the dispersive
term, a discontinuity would then ensue. However,
as steepening progresses, the third term be-
comes important and stabilizes the sharp edge,
leading to the formation of oscillations of short
wavelength which become the incipient pulses. "
Those pulses with o &a0 will propagate as a wave
train, spatially leading the solitons, which cor-
respond to values of o &o0."

The asymptotic behavior of the initial perturba-
tion can be studied exactly through the use of in-
verse-scattering techniques. " If the initial local-
ized amplitude is described by p, '=p, (x, t=0), the
solution of Eq. (8) for long times can be written as

with a velocity-dependent width, &, given by

b, = 2k '(C3/C)+2 (10) p, (x, t) = 5~ 2z„eshc'[(Z„)"'( x4E„t)- C], (13)

o = g/C, )"'k,~, (12)

it is easy to show that an initial perturbation of
the form given by Eq. (9) will continue to propa-
gate with amplitude and width given by Eqs. (10)
and (11)provided that o & c„with o,=W12. For

and a phase velocity, C, proportional to the am-
plitude, A, which, in the rest frame of the sub-
strate, is given by

C =C3(1- ~A).

Equation (9) corresponds to a single surface
hump made up of depleted superQuid condensate, "
and moving with a velocity smaller than that of
ordinary third sound by a factor of 3. It shouM

be noted, however, that its being gapless makes
the beahvior of this soliton different from its y4

field theory" or sine-Gordon counterparts. '4

Whereas the latter require a threshold nonline-
arity in order to be generated, these superfluid
solitons go continuously over the third-sound
modes described by Eq. (7). In fact, by defining
a dimensionless nonlinearity parameter o through

where E„is the nth eigenvalue of a particle in a
potential well described by p', '(x), C is a con-
stant, andN is the number of solitons, which is
given in the large-p, ' limit by

"f.I p.'(x) I
"'dx+ 1~ (14

Since the energies of the bound states are ordered
(i.e., Z, & E, & 8, & ~ ..) and the solitons move
with a velocity proportional to E„, Eq. (13) im-
plies that the initial disturbance will evolve into
a series of superfluid solitons spatially ordered
in such a way that the leading and trailing ones
will have the smallest and largest amplitude, re-
spectively. Several points deserve comment at
this stage. (1) Bound states for the initial eigen-
value problem will appear only for p, '&0, i.e.,
the localized superfluid surface density is nega-
tive with respect to its ground-state value, p, .
If p, ' & 0, its final evolution will correspond to a
nonlinear period wave train. (2) For negative-
dispersion systems solitons emerge for p, ' & 0,
i.e., for a localized enhancement of p, ' above
p', . (3) In the small-p, ' limit and if p,'&0 there
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will always exist one bound state corresponding
to a single soliton emerging at long times.

If the initial depletion in the surface superfluid
density has a Gaussian shape, with amplitude p, '

and width &, the number of solitons emerging
will be given according to Eq. (14) as

(15)

It should be noticed that for the case of a 5

function one still obtains one bound-state eigen-
value (Z, = p, '/2) so that a soliton with that am-
plitude will propagate behind the normal third-
sound mode.

In two-dimensional superfluids it should there-
fore be possible to create superfluid solitons by
applying heat pulses to a localized region of the
film, thereby depressing the superfluid density.
These objects could then be detected by exploit-
ing their two main properties: (1) They can go
transparently through each other, and (2) their
phase velocities are proportional to their ampli-
tudes. The approximations made here in the de-
rivation of their main properties imply working
at temperatures below 0.4'K.

The above considerations can also be applied
to thicker films, but with one important proviso.
As the coverage increases and crossover to
three-dimensional behavior takes place, the or-
dinary linearized theory of third sound becomes
relevant. As one extends it into the nonlinear
regime in the spirit of the present approach, the
dispersion introduced by finite thickness can ov-
ercome the surface terms of Eq. (3) and eventual-
ly become negative. As I have mentioned, for
negative-dispersion systems the inverse-scatter-
ing method makes the existence of bound states
depend on having an initial perturbation of oppos-
ite sign to the one discussed here. If such cross-
over would occur, the equivalent of a cooling
pulse should be applied in order to create super-
Quid solitons. The resulting string of enhanced

p, humps would then lead the normal third-sound
wave in a mirror situation of the scenario de-
scribed for the monolayer limit.

Finally, I would like to comment on the effects
of dissipation processes on the propagation prop-
erties of solitons in helium films. If viscous
damping would take place, its effect could be in-
corporated into the formalism by the addition of
a term p 9'p', /Bx' to the right-hand side of Eq.
(8), with p, a,n effective vi:scosity of the medium.
For low values of p. the soliton string would still
propagate undistorted, but as the viscous term
overtakes the dispersive term, shock waves with

an oscillatory structure could then be generated. "
At low enough temperatures, however, it is ex-
pected that superfluid solitons will become the
dominant modes of excitation.
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FIG. 1. (a) Schematic cross section of a sample con-
taining a dislocation array, with plots of (b) strain vs
position and (c) accompanying variation of tilt angle vs
position.

Isolated single-layer edge dislocations in smectic liquid crystals are observed by po-
larization microscopy. The modification of the smectic-A-smectic-C transition tempera. —

ture by the strain field of the dislocations is used to make them visible. Observations of
periodic arrays in thin samples, by various polarization-contrast mechanisms, and the
measurement of the Burgers vector confirm the nature of the defects observed.

We report here the first direct observation of The smectic layers are anchored parallel to the
elementary edge dislocations in smectic liquid glass surfaces by treatment with a surfactant,
crystals. Theory for the structure and proper- typic/ly hexadecyl trimethyl ammonium bro-
ties of such defects has been developed, ' and mide. ' Some distribution of edge dislocations
their presence has been invoked as an explana- must exist, and for a small enough wedge angle
tion of various observations, ' but they have nev- (c 10 ' rad) elementary edge dislocations should
er before been seen as individual defects in an be separated enough for optical resolution. Upon
otherwise nearly perfect sample. ' We have de- crossing a dislocation, the abrupt change, ~m,
veloped an observational technique that takes ad- in the number of smectic layers, ~, contained
vantage of the large susceptibility associated with in the sample thickness produces an abrupt
a second-order phase change. Near the critical change, e, in the component of strain normal
temperature, T„ for the smectic-A-smectic-C to the layers: he = &m/m. Since the glass is
phase change, the strains associated with a sin- about 1000 times more rigid elastically than the
gle dislocation modify the structure of the sam- liquid crystal, this strain must be accomodated
pie in a way that is made visible by using polar- in the litluid crystal [Fig. 1(b)]. This nonuniform
ized-light microscopy. We describe firs't the strain produces a spatial modulation of T„so
principle underlying the experiment, second, the that the dislocations become visible as phase
basic observations and the evidence that we are boundaries [Fig. 1(c)].
seeing dislocations, and third, the determination To see this more precisely, we write the free
of the Burgers vector of the dislocations.

The smectic-A phase is a one-dimensional crys-
tal in which the rodlike molecules are oriented

$
normal to the molecular layers [Fig. 1(a), left- 1'! &»rll Ill ~ tl/ll pl ~~ & t yrrl lt~lli ~l lI ~ill]ll~& ~~IIII
hand sides]. In the smectic-C phase. the long mo-
lecular axis is tilted by a polar angle L9 with re-
spect to the layer normal [Fig. 1(a), right-hand

]I, »
sides]. This tilting is accompanied by a decrease b
of layer thickness, which in a simple rigid-rod I
model should vary as cosO. A compressive stress
normal to the layers favors the C phase and rais- C C A C A~C
es the transition temperature, while a dilative
stress lowers it, an effect already studied. '

To utilize this effect to make dislocations visi-
ble, we prepare thin single-crystal samples be-
tween slightly nonparallel glass slides [Fig. 1(a)].
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