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Mechanism for Major Disruptions in Tokamaks
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Vfe propose a mechanism for the major disruption in tokamaks that involves the non-
linear destabilization of tearing modes by the (m =2)/(n =1) tearing mode, where m and
n denote the poloidal and toroidal mode numbers, respectively. The magnetic islands
generated can extend across the plasma cross section. For resistivities of the order of
magnitude of these in TOSCA and LT-3, the time scale for their appearance is consis-
tent with the time for the major disruption.

The magnitude of both the current and the den-
sity in present kokamak discharges is limited by
the major disruptive instability, ' ' which is char-
acterized by a rapid (100 psec) radial expansion
of the plasma column. In this Letter, we con-
sider a mechanism for the major disruption that
involves the nonlinear interaction in three di-
mensions of tearing modes with different pitch.
In cylindrical geometry, we find both analytical-
ly and numerically that the (m =2)/(n = 1) tearing
mode (m and n are the poloidal and toroidal mode
numbers, respectively) can nonlinearly destabil-
ize other modes having odd m on a time scale
consistent with the major distruptions if the 3/2
mode is also linearly unstable.

In order to study the nonlinear interaction of
modes with different pitches, we employ the re-
duced set of equations derived in Refs. 6 in the
large-aspect-ratio, low-P approximation. In
terms of the poloidal flux function and the veloci-
ty stream function, the equations are

Dg/Dt= qZ& —Et —&y/8&,

DU/Dt= —8'[f (V(X VJt)+ BJt/&f] (2)

The radial, poloidal, and toroidal coordinates are
denoted by ~, 8, and g, respectively; t) is the re-
sistivity; and E& is the electric field at the wall.
The toroidal current density Jt is V~'g/p„ the
velocity V~ is Vy&& f/B, the vorticity U is V„'y,
and D/Dt= 8/at+ V~ ~ V; t—he subscript & means
perpendicular to the unit vector in the toroidal
direction. The equations are in dimensionless
form with all lengths normalized to radius a and
all times normalized to the resistive magneticI'

diffusion time T~= p.,a'/g (where p, is the vacuum
magnetic permeability and g is the characteristic
value of the resistivity). The quantity S is the ra-
tio of v~ and vs «= R,(p,p)~'/Br (whe-re R, is the
major radius, p is the constant mass density, and

Br is the constant toroidal magnetic field). These
equations have been numerically advanced in time
employing a grid typically of size 60 (radial) by

30 (poloidal) by 15 (toroidal).
We consider safety-factor profiles of the form

q(r) =q(0)[1+(r/r, )'~]~~, where q(0) is the safety
factor at r=0, x, is the width of the current chan-
nel, and A is the flattening parameter. This pro-
file is the same as the peaked, rounded, and flat
profiles of Furth eI, al. ' for A. =1, 2, and 4, respec-
tively. An analysis of this profile for q(0) and
q(1) fixed at 1.08 and 4, respectively, shows that
the 3/2 tearing mode, which is stable for A=1,
becomes strongly unstable as A increases; its
(single-pitch) saturation width is also an increas-
ing function of A. Although the 2/1 mode is al-
ready unstable for A. =1, its growth rate and satu-
ration width also increase with A.. In addition, if
q(1) and A. are held fixed, then the growth rates
and saturation widths of both the 2/1 and 3/2
modes increase with increasing q(0).

On the basis of this analysis, we conclude that
the most unstable profiles are the ones with large
A. and q(0) for which both the 2/1 and 3/2 modes
have relatively large growth rates and saturation
widths. The q profile corresponding to the elec-
tron temperature profile observed in the PLT
tokamak before a disruption' can be described by
this parametrization with A =4 and q(0) =1.38 and
q(1) -4. The results we present here are mainly
for this profile. This profile was also considered
by White et a/. '; however, only the 2/1 mode was
studied because the two-dimensional code MASS
was employed. We take $=1.3 && 10' (normalized
at r=0), which corresponds to resistivities of the
order of those in the TOSCA and LT-3 tokamaks.
The resistivity is taken to be constant in time
and given by t)(r) =E&"/J&,(r), where the sub-
script 0 denotes equilibrium quantities; of course,
for large toroidal current deformations this mod-
el is not self-consistent In a run, . both the 2/1
and 3/2 modes are perturbed initially.

The basic results of the three-dimensional (3-D)
calculations are summarized in Fig. 1, where the
instantaneous growth rates of the 2/1 and 3/2
modes are plotted as functions of time (solid
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FIG. 2. Selected magnetic islands (obtained by projecting Fourier components of a given pitch) observed at time
t =2.5&&10

its time rate of change is given by dg»/dt= (»'g»
gg $Q| l/Jgg gQ $2$ f53 where g, and g~ are coupling

coefficients. Then employing the WEB approxi-
mation, dividing by (», and noting from standard
mode-coupling theory that Eq. (3) app]. ies because
the 1/1 and 5/3 modes are totally driven by the
2/1 and 3/2 modes, we obtain Eq. (6), where

g, =g, g»'g»'/g»'+g, g»'g„'/g»'. Clearly, if
g, 0, y» will increase initially. Because y» is
decreasing, however, a maximum in y» should
occur. Solution of Eqs. (3)-(6) shows that the
position of the maximum is given by At =- t"—to
= [in(2y»'/~g, ~ )]/2y»' and the value is given by
by= y»~- y»' -—g, y»'/2 ~g, ~, where the super-
script M denotes quantities at the peak. Because
of the way in which the coupling coefficients
scale with the parameters at t=t„4t and Ay
scale in the following fashion for a particular q
profile: (bt)'=(y»'Dt-lne)/(y»')' and (by)'
=(y»0)'by/y»0, where e denotes the magnitude of
g»', the unprimed variables indicate quantities
determined from an arbitrary run, and the primed

variables are quantities for another run with a
similar q profile but a different value of S. Rath-
er than compute g, and g, analytically, which is a
difficult task because of the many tearing layers
involved, we determined them by using the pre-
ceding expressions for ~t and ~y to fit the data
for one run; then we use the scaling rules for
other runs and for large S values that cannot be
analyzed with the code because of the small tear-
ing layer widths involved. But we have prelimi-
nary results from a more efficient code which
show the same characteristics for S=10' at r=0.
The fit for the run described in the preceding par-
agraphs is shown in Fig. 1 (dashed lines). An
analysis of several runs verifies the scaling rules
for At and Dy.

The mechanism described here is generally
consistent with the experimental data on the ma-
jor disruption obtained in the LT-3 and PLT de-
vices. For example, in LT-3, the toroidal probes
show the presence of n = 1 and n = 2 modes, the
poloidal probes show the presence of yg = 1, 2,
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and 3 modes, and the combination I = 3 and yg = 2
has been detected. ' In addition, in PLT' althoughI = 2 precursor oscillations are observed, the
disruption itself often exhibits poloidal asymme-
try, presumably corresponding to the generation
of odd poloidal mode numbers. Finally, during
the disruption ~ = 1 oscillations are often ob-
served within the plasma core; this observation
might correspond to the generation of the ~ = j.
mode described here.

The most important feature of the major dis-
ruption that any model must explain is the rapid
time scale. For the mechanism described here,
the characteristic time scale for the development
of the magnetic islands is the width of the peak in
the 3/2 growth rate. If we define the half-width I'
by y»(t" + I') —y» = Ay/2, then I' = (y2, ) . As-
suming that the scaling does hold for all values
of S, we find that in PLT the predicted value for
the disruption time is 230 psec. If the effect of
diamagnetic drifts is included in the expression
for y»', then I =440 @sec. These time scales
are consistent with the observed disruption time
of 500 psec. A study of several other machines,
including I T-3 and TOSCA for which the preced-
ing analysis rigorously applies as far as the mag-
nitude of the resistivity is concerned, also shows
consistency with the observed disruption time
(approximateiy 10 psec).
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Superfluid Solitons in Helium Films
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It is shown that in monolayer superfluid He films, in addition to third-sound modes,
small amplitude effects can lead to the existence of gapless solitons made up of super-
fluid condensate. These nonlinear excitations can be created by localized perturbations
in the superfluid density. The conditions are studied under which such initial disturbance
evolves into an ordered string of solitons, and the differences to be expected in thicker
films are discussed.

Third-sound pheriomena in helium films have
provided a wealth of information on the proper-
ties of nearly two-dimensional superfluids. '

Originally proposed by Atkins' as the superQuid
analog of surface waves, they soon became a pre-
cise tool for examining the critical behavior of
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