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esu deduced from the TPA data of Ref. 12.
In conclusion, we have presented a new method

of nonlinear spectroscopy most suitable for the
study of resonances in highly absorbing solids.
It has been successfully applied to perform the
first active nonlinear scattering on the l, biex-
citon of CuCl up to the fourth order. Our prelim-
inary results show that the shape and the position
of the resonance as observed by active nonlinear
processes are significantly different from those
revealed by TPA experiments.
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Analytical and numerical studies of collisionless tearing modes that are wider than the

"current channel" are presented. The m =1 type of inertial mode is shown to be strongly
unstable for typical tokamak shear and P, . Large spatial extension and large growth rate
make it a possible candidate for explainirg plasma disruption.

We report, in this Letter, analytical and nu-

merical studies of tearing modes in a collision-
less plasma. The modes we discuss are charac-
terized by a mode width ~ greater than the width

of the electron layer or the "current channel" x,
=

~
~lk ~~' v). Here k „'=k,/L„k, is the azimuth-

al mode number, L, is the shear length, v, is
the electron thermal speed, and ~ measures the
region in which the parallel electric field is non-
zero. Laval, Pellat, and Puillemin' were the
first to present an m ~ 2 type of current-channel
tearing mode; their result is instructively dis-
cussed by Brake and Lee.' Later, Chen, Ruther-
ford, and Tang' found trapped-particle modifica-
tion to the mode. Although, these results are
easily recovered in the appropriate limit of our

dispersion relation, me emphasize here the m =1
type of inertial tearing mode first pointed out by
Hazeltine and Strauss. 4 Our analytical dispersion
relation, which has been verified in detail nu-
merically, modifies the previous results for P,
&m, jm, . We also clarify its relationship to oth-
er instabilities. Most importantly, we confirm
the potentially rapid growth and wide parameter
range for instability of inertial tearing modes
with m =1 character (large A'). Whenever it is
consistent to treat the plasma in a collisionless
approximation, this mode mould be a serious
candidate to explain plasma disruption because
of its large spatial extension and large growth
rate.

The slab geometry formulation of the electro-
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magnetic eigenvalue problem is now standard. "
If the radial wavelength is shorter than the azi-
muthal wavelength, we have

(o/x A ) [(0/x) p)

0"= (o/x) [(P/x) —
q ],

(1)

(2)

where y is the electrostatic potential, g= (dA ~~/

0 ll'c is proportional to the vector potential A ll,

a prime denotes differentiation with respect to
the radial coordinate x, x ~' = &u(~+ ~,.~)/k, I' v„)',
vz ——(Bo'/4vnom, )' ' is the Alfven speed, u,.~ is
the ion diamagnetic drift frequency, and all
lengths are normalized to p, = (T, /m, )'~2 0, '.
In Eqs. (1) and (2), o is the dimensionless mea-
sure of the generalized "conductivity. " Although
our analytical method can handle fairly compli-
cated models of v (i.e., with effects of tempera-
ture gradients and trapped particles included' ),
w'e keep here, for illustrative pU. rposes, to the
simplest representative collisionless model,

(d —4) X xo= —x 84 g 8 g 8

(a)+CO;+ X X
(3)

where ~,„=k,c,/L„ is the electron diagmagnetic
drift frequency, c, = (T, /m, . )'~' is the sound
speed, L„= ln, 'Bn, /Bxl is the density scale
length, and x, = &a/k, ~'v, measures the width of
the current channel. It is customary, at this
stage, to combine Eqs. (1) and (2) to obtain a
single second-order differential equation in E„
= —By/sx. ' We depart here from the convention-
al approach, and instead obtain an equivalent
equation for Q = (g/x) —y = -( zx'E„'/ )on gB/ ,x

x A x dQ/dx 2xE~xA
dx x —xA (x —xA )

methods, ' we can show that the functional (( ~ ~ ~ )
+ OO

denotes dx)

XA Ck X —XA

(6)+2xA
X X A

is variational, in that 5$=0, generates Eq. (4)
with the constraint Eq. (5). To do that we need
to use the relation

Q=x 'exp( —ax'/2), Rea &0, (7)

where n is a variational parameter, to evaluate
S. All the integrals involved can be evaluated ex-
actly. '

A, general analysis of S will be presented
elsewhere. In this Letter, however, we are
going to concentrate on recovering the modes
which are much wider than the current channel,
i.e., for which lx, a'~'l &1~ For further simplifi-
cation, we also assume that lx„n'~'l &1. With
these approximations, and for ImxA &0, we can
write

S~S0+S,o.' '+S,n,
where

(&'+ equi/x „)Eo=2xq' J „[Qx/(x'-x„')']dx,

which is obtained by multiplying Eq. (4) with (1/x)
and integrating over all x. In Eq. (6), a=1 if
ImxA &0, and e = -1 if ImxA &0. The extremal
value of S—= S*=0 yields the dispersion relation.
Since we are looking for localized solutions of E

ll

which tear the magnetic surfaces, the appropriate
trial function should be even in E ll. Recalling
that Q=E

~,/x, we choose the trial function

where E, is related to 6', the stability parameter
of the kink-tearing mode theory, "by

(5)

We have chosen to write our equation in terms of

Q (E ~~/x) instead of F.„, because it is the behavior
of E

ll
which determines whether the mode has a

current channel or not. We notice from Eq. (1)
that while the E

ll
profile can be much broader

than the o profile, i.e., when A. & lx, l, F.„ is con-
strained to follow the o profile. This makes E„an
unsuitable variable for the study of current-chan-
nel modes; and presumably explains the less ac-
curate results of Ref. 4.

We now solve Eqs. (4) and (5) by setting up a
variational principle for Q. Following standard

+ 7T
&A

id + (d

So = S,o. = S,'/4S2 (10)

which must be solved for the eigenvalue ~. Of
course, the acceptable solution must satisfy the
consistency cr iter ia Re o & 0, l x, o '~'

l
& 1,

lxzo. '~'l &1, and Imx„&0. The first of these
assures a localized solution, the second, a solu-

2(d (d +

XA Q)+(d. g

S, = -2srxAZ' .
A simultaneous solution of Bs/Bo. =0, S*=0, gives
o. '~' = —S,/2S, and leads to the dispersion relation

1376



VOLUME 41, NUMBER 20 PHYSICAL RKVIKW LKTTKRS 13 NovEMBER 1978

0*+i k "v 2 A
Air"v (12)

which has a growing root if P, '/'&4(L„/L, )'(vm, /

l.6

l.4—

l. 2

I.O

tion with a current channel, and the third is sim-
ply for convenience, and is not essential to the
analysis. To make further progress, we con-
sider the infinite-mode-width limit, e -0, which
implies that F.

II
is essentially constant. Since EII

= g —xy, o. -0 is equivalent to the constant ( ap-
proximation if xq is neglected. Indeed, we re-
cover, in the zeroth-order dispersion relation $
=0, the mode of Laval, Pellat and Vuillemin'
which was derived making use of the constant-(
approximation. However, we also find an un-
stable mode when (6') ' is zero. We use (6')
= 0 as a definition of m = 1 modes. For simplicity,
let us put co,"~=0, then S=O leads to

(& —(u, „)[1—(ia'(u/vk „'v„)]=iyr,
where yr = (6'k „'v„'/vv v, ). Notice that for u,.~
= 0, the constraint Imx „&0 is satisfied for any

growing mode. For small 6', the second term
in the square brackets in Eq. (11) is small, and

the resulting dispersion relation ~ = ~,++ iy~
describes the collisionless tearing mode of Ref. 1.
For (6') '=0, Eq. (11) is the dispersion rela-
tion for m = 1 type of modes, and the solution is

m, )' ', where expressions for vA and &u, + have
been used. This restriction is a consequence of
evaluating the zeroth-order dispersion relation,
and also of expanding the integrals for small
ix Ao. '/'~. A numerical solution of the variational
dispersion relation allows us to handle large
values of P, . For ixAn'/'i&1, the current-chan-
nel condition ix, n'/'~ &1 simply requires that P,
&m, /m, . It can be easily seen that for the grow-
ing root of Eq. (12), all the consistency conditions
are readily satisfied. Since P, &m, /m, . is re-
quired, it is clear that the "current-channel"
inertial tearing mode has no electrostatic limit.

We have also solved the Eqs. (1)-(3) by direct
numerical integration using a code developed by
Miner. This code carries out a finite-element
Galerkin procedure employing basic cubic splines.
The boundary conditions are p'(0) = y(0) = 0, and

g'(x, ) = g(x, )(x, + 2/n. ') ', y(x, ) = ((x,)/x, . Since
the latter condition is EII =0, the boundary point
is chosen outside the 8 „ layer, i o, '/'x, j»1.

An analysis of Eq. (11) reveals that a positive
nonzero (6') ' decreases the growth rate of the
m = 1 mode. As (6') ' is increased further, the
mode smoothly goes over to the Laval mode,
which has a smaller grow'th rate than the m =1
mode. A negative (a') ', on the other hand, en-
hances the growth rate of the mode, and as 6'
becomes small, y approaches the large magneto-
hydrodynamic growth rate nk ~~' v„/i A' I. The
same circumstance pertains in collision-domi-
nated regimes. ' All of the above-mentioned fea-
tures of the dispersion relation Eq. (11) have
been verified in detail by carrying out extensive
numerical experiments in various parameter
regimes. Thus we have verified the mode of
Laval, Pellat, and Vuillemin which is relevant
for small 6'. %'e present here the comparison

~r
Analytic ~e~

0.8

0.7
y

8%
0.6—

,005 .OI 0
I

.0 I5

I I

.020 .025 .030

0.5
I.O

I

1.5
M;/M„

I

2.0

FIG. 1. Normalized eigenfrequency ~/~, ~ vs p, for
cu;~ =0, E'=~, andI. „/L~ =0.1.

Normalized growth rate y/&v, ~ vs the ion
mass m;/mH, where mH =1S36m„ for p, =0.01 and

L„/Z, , =O
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nel.
Therefore, we have demonstrated the existence

of an m = 1 (b, '= ~) "current-channel" tearing
mode in a collisionless plasma by analytical and
numerical methods. The mode has a growth rate
-~,~, which makes the growth time comparable
to typical disruption time. The mode remains un-
stable for realistic shear L„/L, -0.1, and for a
wide range of P, : greater than m, /m, and up to
a few percent. Its large growth rate coupled with
its large spatial extension make this mode very
important for high-temperature, moderate-den-
sity plasmas which can be treated in a collision-
less approximation.

This work was supported by the U. S. Depart-
ment of Energy, Contract No. EY-77-C-05-4478.
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FIG. 3. y and g vs x/p, for P, =0.005, L„/L, =0.1,
~&. —0, and ~ =0.52+1 54i .lx, l.denotes the current-
channel vridth.

between our analytical and numerical results for
the m = 1 (b, '= ~) inertial tearing mode. In Fig, 1,
we plot the real part of the frequency cu„and the
growth rate y as a function of P, . The analytical
[Eq. (12)] and numerical results are clearly in
excellent agreement in the limit of validity of
Eq. (12). The numerical solution has been ex-
tended to higher values of P„and the instability
persists. To check the scaling of the growth rate
further, we plot y as a function of the ion mass
in Fig. 2, and the agreement is again excellent.
In Fig. 3, we show a typical plot of q and g as a
function of x/p, . The mode width, i.e. , the re-
gion in which E

ll
remains finite is =2.5p„while

the current-channel width is =0.25p, . Thus the
mode is indeed much wider than the current chan-
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