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3. At high energies h is about 8, because of the
greater absorption.

Figure 4 shows our measurements plotted with
data at the two nearest energies, '" for qualita-
tive comparison. The optical theorem gives the
value of the imaginary part of the square of the
forward-scattering amplitude to be 8.68+ 0.05
mb/sr. ' Using a simple exponential model for
extrapolation' we have

do/dQ*= If'&tl'(1+ a„'+ P„')e",

where f,z, =ho'«, /4w is the mean value of the
imaginary part of the spin-dependent amplitudes,
e „ is the rms value of the real part of the spin-
dependent amplitudes, and P „ is the rms devia-
tion of the imaginary part of the amplitudes from

f,z,. From this we obtain

(a„'+P„')~'= 0.41+ 0.04, a„~ —0.43+ 0.04,

where we have assumed that the sign is negative
as determined by other methods. 6'7

Using a small-angle p-d scattering technique,
Dutton and van der Raay' obtained a„and P „at
four-momenta from 1.29 to 1.69 GeV/c. We have
averaged their results to obtain (a„'~48„')"'
=0.56m 0.18, a„=-0.48+0.16, and P„=0.26
+ 0.26. Using dispersion techniques Bugg and
Carter' obtained n„= —0.32+ 0.20. Our result is
consistent with these values, but because of the
large error bars on a„an improved value of P „
cannot be obtained. Since backward-angle n-p
scattering' shows effects due to m' exchange for
-u & 0.01 (GeV/c)' the possibility exists' that w'

exchange at -t & 0.01 (GeV/c)' would change the

slope and intercept from our values. This effect
has been ignored in past publications and will be
the subject of further investigation by us.

We would like to thank C. Gregory, J. Valen-
tine, J. Hontas, J. Sanchez, H. Balsham, N. Col-
ella, E. Dhingra, and the LAMPF staff, especial-
ly H. Werbeck and D. West, for their help on va-
rious aspects of this experiment. This work was
supported by the U. S. Department of Energy.

' Present address: Los Alamos Scientific Labora-
tory, Los Alamos, N. M. 87544.

~~Present address: EG @0, Albuquerque, N. M.
87106.

~' Present address: Science Applications, Inc. , Albu-
querque, N. M.

~@Present address: Schweizerisches Institut fur
Nuklearforschung, Zurich, Switzerland.

'D. V. Bugg, TRIUMF Report No. TRI-75-5, 1975
(unpublished) .

2B. Dieterle, in Nucleon -Nucleon Interactions —1977,
AIP Conference Proceedings No. 41, edited by H. Fear-
irg, D. Measday, and A. Strathdee (American Institute
of Physics, New York, 1978).

3N. S. Amaglobelli and Yu M. Kazarinov, Eh. Eksp.
Teor. Fiz. 37, 1587 (1959) [Sov. Phys. 10, 1125 (1960)].

R. A. Murray et a/. , Nuovo Cimento 49, 261 (1967).
T. J. Devlin et al. , Phys. Rev. D 8, 136 (1973).

6L. M. C. Dutton and H. B.van der Raay, Phys. Lett.
26B, 697 (1968).

TD. V. Bugg and A. A. Carter, Phys. Lett. 20, 203
(1964).

L. M. C. Dutton and H. B.van der Raay, Phys. Rev.
Lett. 21, 1416 (1968).

~M. L. Evans et al. , Phys. Rev. Lett. 36, 497 (1976).

Vacuum Polarization at Long Distances and the Heavy-Quark-Antiquark Potential
Enrico C. Poggio and Howard J. Schnitzer

Department of Physics, Bxandeis University, ~althanz, Massachusetts 02154
(Received 20 July 1978)

Vacuum polarization at long distances for confined heavy-quark —antiquark (QQ) pairs is
considered. The vacuum-polarization —corrected static potential is shown to have a radi-
al dependence which should allow interpolation between charmonium, upsilon states, and
other heavy QQ systems. It is argued that the static, confining potential cannot grow fast-
er than a linear potential at large distances, within the framework of this analysis.

Heavy-quark-antiquark (QQ) spectroscopy is
generally regarded as being well described phe-
nomenologically by a nonrelativistic potential
model, with a static, quark-confining potential. '

Along with the model, one has the understanding
that there are (at least) two importnat regions of
coordinate space, roughly described by x& (n, m) '
~a„where quantum-chromodynamic (QCD) per-
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turbative effects are dominant, and r»ao where
confinement is most significant and conventional
perturbation theory is inapplicable. Here M is
the heavy-quark mass, a, and a, are the QCD
fine-structure constant and Bohr radius, respec-
tively, and r is the QQ separation.

A further refinement of the potential model pro-
vides for the coupling of the QQ states to real and
virtual decay channels. "' This coupling can be
described qualitatively in several closely related
ways. For example, in the string model, at large
distances it is energetically favorable for the
string to split, rather than increase in length in-
definitely. In field-theoretical language this
means that at sufficiently large QQ separation,
vacuum polarization will produce qq pairs, which
gives partial screening of the QQ potential, and
allows the coupling QQ -Qq+Qq, where q repre-
sents a light quark. Therefore, for a satisfactory
description of QQ spectroscopy, one must also
consider the physics of these couplings, which

then implies three important regions in the prob-
lem:

r&(n, jkf}

(n, M) '&r&(2m) ',
r&(2m) ',

(la)

(1b)

(lc)
where m is the light-quark constituent mass. It
is the purpose of this paper to present a discus-
sion of the QQ potential in regions (1b) and (1c)
based on the effects of vacuum polarization at
long distances, motivated by field-theoretic ideas.
As a result we will exhibit a confining potential
which should allow one to interpolate from char-
monium to heavier QQ systems, and which is con-
siderably better motivated than those previously
suggested.

Substantial circumstantial evidence has accumu-
lated to suggest that the long-distance confining
potential transforms as a Lorentz scalar. ' Ac-
cordingly we consider the effective Lagrangian
for color-singlet meson states to be

fd jeff Jd x~ quark f+ Ni(i(x)VC(x ~}~j~g(~}d xd ~ &

4)
where g, (x) is a quark with flavor i, and

V, (x) = 2m'(x, )V,(r).

(2}

Our results and qualitative conclusions, however, are independent of whether a vector or scalar con-
fining force is chosen. In this approximation we consider all quark-antiquark pairs to interact by
means of an instantaneous static potential. (This same assumption is made by the Cornell group in
their analyses. ) We regard V, (r) as representing all orders in gluonic self-interactions, but with all
fermion closed loops omitted. One can then envision a fermion loopwise expansion of the QQ potential,
with V, (r) the zeroth-order term in the expansion. In this vein, we have calculated the one-particle
irreducible vacuum-polarization contribution to V, (r), given diagramatically by an infinite chain of
bubbles of light quarks, which should represent dominant features of the coupling of the QQ to decay
channels at long distances.

The one-loop quark vacuum-polarization correction to the QQ potential is given in momentum space
by

6V (p') = —iV, (p') » (p')V, (p'),

where V, (p') is the Fourier transform of V, (r). For a scalar potential the vacuum polarization m, (p')
is quadratically divergent, so that two subtractions are required to obtain the finite result

v (p') = C, + C.p'+p'f, (p'),

where m„ is the renormalized version of w„and C, and C, are finite constants. Rather than choose a
specific model for the vacuum polarization, we use the spectral representation

1 I'" dsImm„(s)
w, 2 s'(s —p'+ i6) ' (6)

with Imps~ 0 as a result of the locality of the interaction in (2). The dressed one-loop vacuum-polariza-
tion correction can be iterated to form the one particle irreduci-ble vacuum-polarization-corrected
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potential

V(p') = V, (p'){1+i[C, + Cp'+ p'v, (p') ]V. (p') i '

We assume that both V(p') and V, (p') are confining potentials. Then

C=C=01 2

(7a)

(vb)

is required. Since v, (0) vo from the positivity of Imns, one also deduces that V(p ) cannot grow faster
than (p') ' as p'-0, which means that V(r) cannot grow faster than a linear potential for targe r, with-
in the framework of this analysis.

For definiteness, assume that

V, (r) = ar+ b

for all r. Then in coordinate space the one-loop correction to V, (r) is given by

6V,(r) =Jd'r'V, (r-r')B(r') =(a/n')K(r; m'),

where D(r) is the Fourier transform of m, (-p'). With the use of methods suggested by Schwinger, ' it
is easy to show that an excellent approximation is given by

Z(r; m') ~3k(n/m')[(ar+b)+ 2(a/m')(1 —e ' ")r '],
where

,'mm'J—, 2(ds/s')lmn„(s) &0.

One proves by induction that the iteration of this one-loop correction is

6V(r) = —(a/m ) exp [3X(a/n) S/Sm']X(r, m')

(1Oa)

(lob)

for the physically interesting case of three light quarks of approximately equal mass m. One then ob-
tains the potential

V(r) = V, (r)+ bV(r) =Ar+B —(3A/2m)(A/m')'(1- exp[2mr(a/A)' 2])r ', (12)

where

A=a[1+ X(3/m)a/m'] '&a,

B= b f 1+A(3/m)a/m'] ' & b .
(13)

There are two interesting limiting cases, i.e.,

and

V(r) =Ar+B for r» [2m(a/A)~'] ' (14a)

V(r) =ar+ V(0) for r «[2m(a/A)~'] ', (14b)

where

(15)

The screening in region (14a), and the absence of
the renormalization of the slope of the potential
in region (14b) is evident.

It is obvious that the potential (12) has the cor
rect qualitative behavior to permit a satisfactory
interpolation between g and V spectroscopy,
since previous analyses' suggest that charmoni-
um is sensitive to r»(2m) ', while upsilon states

! probe r&(2m) '. Note that the assumption that
the vacuum polarization is due to free quark loops
is too restrictive to be useful phenomenologically,
which is why we have not committed ourselves to
a specific model for the vacuum polarization. In-
stead we have used the spectral representation
(6) in conjunction with (9). However, as a result
the free parameter A., defined by (10b), appears
so as to incorporate these unspecified features of
n, (P'). The strong interactions among the light
quarks are included in two separate ways: (a) by
the iteration of the one-loop (dressed) vacuum-
polarization correction so as to sum up the infi-
nite chain of bubbles to form the one-particle ir
reduci hie vacuum-polarization correction, and
(b) by the use of the complete spectral represen-
tation (6) in our analysis. A reflection of this
situation is found in (13), which relates A in a
nonperturbative way to all orders in m '(a/m'),
the natural dimensionless parameter of the prob-
lem, as well as to the parameter A. defined by
(10b).
For QQ phenomenology, we advocate the poten-
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tial

where

(16)

V(r) = Ar+ B —(3A/2m)(A/m')'(1 —exp [-2mr(a/A)~'] jr ', (17)

with the parameters A., A, a, and b related by
Eq. (13). The free parameters of the model are
A, A, and b, but m should be fixed at the light-
quark constituent mass. Moreover, A. ~, is re-
quired by the positivity of the spectral represen-
tation for Pr, (p'), with the free quark loop provid-
ing the lower bound for A.. We display the behav-
ior of V(r) in Fig. 1 for a plausible choice of pa-
rameters. If b =0, ' then V(0) ~ —1 GeV, which
is compatible with the sign and magnitude of V(0)
obtained earlier, ' but here it is related to other
parameters of the model. One observes that V(r)
has the same qualitative features guessed by oth-
er workers' in order to interpolate between ( and
T states, although our potential is much better
motivated theoretically. It should also be noted
that V(r) has the same I orentz transformation
properties as V, (r), which is important in extend-
ing the above considerations to the spin-depen-

f.0

dent corrections of the QQ spectrum. "
In summary, we have presented a treatment of

the QQ potential which is strongly motivated by
field-theoretic ideas, an essential feature being
the consideration of the long-distance vacuum-
polarizatron effects, and which should interpolate
between the various QQ systems. Note that T is
sensitive to r&(2m) ', where V(r) ar-+V(0), as
seen from Eq. (14b). Therefore if heavier QQ
states, such as tt, exist, then [E(n = 2, 'S, ) -E(n
=1, 'S,)],t-&E(T') -E(T), since this energy dif-
ference should scale downward, roughly as mz ~'
from the Y' —T mass difference. Qn the other
hand, the average size of the g states is greater
than (2m) ', so that charmonium feels the screened
potential, in contrast to the upsilon states, which
lie inside the vacuum-polarization cloud of size
r= (2m) ' due to the light quarks. This is the
principal physical observation of this paper. We
will report the details of the derivations in a sep-
arate communication.

This work was supported in part by the U. S. De-
partment of Energy under Contract No. E(11-1)
3230.
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FIG. l. A graph of V(r), as given by Eq. (17), with
A =0.2 GeU, a/A =3.5, m=0.333 GeU, and b =0. These
parameters are not chosen to be best fits to data, but
represent a plausible set of parameters based on earli-
er work (Refs. 1 and 5).
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The magnetic moment of the A hyperon has been measured to be p~=(-0.6138+0.0047)pN.

Magnetic moments have played a major role in
the development of our current understanding of
the structure of matter. The Zeeman effect and
the Stern-Gerlach experiments were crucial to
modern ideas of angular momentum, spin, quan-
tum mechanics, and atomic structure. Extraor-
dinarily precise measurements of the magnetic
moments of the electron and muon have supported
the validity of quantum electrodynamics and
established that these charged leptons behave as
pointlike Dirac particles. The magnetic mo-
ments of the deuteron and other nuclei shed light
on the structure of these composite systems. If
the lessons of the past are any guide, precise
measurements of baryon magnetic moments will
provide us with strong constraints on models of
hadronic structure, and important information
about the nature of the constituents of hadrons.

The large anomalous moments for the neutron
and proton have shown that these particles are
not elementary. Their structure are related by
unitary symmetry schemes which predict the ra-
tio of their moments to 3'l/~ accuracy. Unita, ry
symmetry also predicts the moments of the
strange baryons. Previous measurements of the
A moment indicate that the symmetry is not ex-
act, and that a symmetry-breaking parameter
must be introduced into the theory.

In a simple s-wave quark model of the baryons,
the nucleons contain only u and d quarks, and
their moments can be used to calculate these
quark moments. The magnetic moments of the
other memebers of the baryon octet involve the
strange quark. The lambda hyperon consists of
u, d, and s quarks with the u and d quarks in a
state with spip J=O. The spin and magnetic mo-

ment of the A' are identical to those of its s
quark. Among the stable baryons, this property
is unique. Thus, a precise measurement of the
A moment gives the s-quark moment directly.
This, in turn, can be compared with the moment
of the u quark to give the symmetry breaking.
Further assumptions regarding the relationship
between mass and magnetic moment allow cal-
culations of quark masses which can be compared
to those determined directly from hadron masses.

The observation that A"s inclusively produced
by 300-Gev protons are polarized has been re-
ported. ' This polarization offered an opportunity
to measure the A' magnetic moment with unpre-
cedented precision because of several advantages
over earlier experiments. The large inclusive
cross section and rapid data-acquisition tech-
niques make it possible to obtain a large sample
of polarized A 's in a relatively short time. The
high energy results in an average decay length of
order 10 m. Conventional dc magnets over such
distances give large precession angles. Finally,
the Fermilab neutral hyperon spectrometer has
high acceptance (greater than 70% averaged over
momentum) which reduces systematic errors in
measurements of the polarization vector. A mea-
surement of the A' magnetic moment (to 9/o un-
certainty) was an intrinsic part of the original
discovery of polarization. It was clear that a
number of improvements could be made in a new
experiment specifically designed to measure the
moment.

The basic apparatus common to both measure-
ments is illustrated in Fig. 1(a).' The coordinate
system [Fig. 1(b)] has Z along the neutral beam
direction. Y is vertical upwards, and X= Y&Z
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