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of a new transport channel. It is proposed that,
in addition to being incorporated as a positive de-
fect with a singly coordinated chalcogen as a
compensating center, some fraction of the thal-
lium atoms introduces a shallow trapping level
approximately 0.1 eV above the hole hopping
states, N„. While at lower concentrations the
shallow traps do not contribute to the measured
transit time, direct charge displacement through
these traps will begin to dominate the intrinsic
transport channel if their concentrations exceed
the hopping density 1V„=10"cm '. This density
is in numerical agreement with the observed
transition at -(1-5)&& 10's Tl/cm' (Fig. 1). The
changes of the transport properties (field depen-
dence and activation energy of t~ and transient
current shape) further support the argument that
a new mechanism begins to dominate transport
for NTi ) 5 x10"Tlf cm'.

In summary, we have shown that thallium added
to a-As, Se, in concentrations 10"-10"cm ' sig-
nificantly reduces transient hole transport but
that it has no effect on photoluminescence and
photoinduced ESB. Although our results can be
explained in terms of the specific defect chemis-
try originally proposed by MDS and modified by
KAF which invokes the existence of close defect
pairs, several difficulties remain with that inter-
pretation. We have proposed an alternative ex-
planation which is generally consistent with the

proposed defect models but which, in our opinion,
may provide a more satisfactory explanation.
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A study is presented of elementary excitations of an unfrustrated system which can ex-
hibit frozen magnetism without average long-range order. In three dimensions long-
wavelength excitations are quasipropagating with linear dispersion and quadratic damping
in accord with hydrodynamic speculations and computer studies, but high-energy modes
may be localized. In lower dimensions the modes are overdamped even in a linearized
equation-of-motion approximation.

There is growing interest in the low-tempera-
ture elementary excitations of alloys with strong
quenched ferromagnetic-antiferromagnetic ex-
change disorder; such systems can exhibit fro-
zen (or tluasifrozen) magnetism without average
long-range order. Spin- glass systems' with frus-
trated' exchange are. complicated by the difficul-
ty of microscopically specifying the classical
ground or low-lying metastable states, necessi-

tating poorly controlled' approximations in analy-
tic studies of their excitations. There exist,
however, unfrustrated models which can exhibit
frozen magnetism without long-range order but
have microscopically specifiable classical ground
states. In this Letter I consider the excitations
of the simplest such model with nontrivial dyna-
mics, the Heisenberg-Mattis' model. Its classi-
cal thermodynamics is trivial, but its excitation

1978 The American Physical Society 1321



VOLUME 41, NUMBER 19 PHYSICAL REVIEW LETTERS 6 NOVEMBER 1978

spectrum shows several features which may be
common to spin-glass systems. It is hoped that
this study and its extensions will help guide
studies of the frustrated systems.

The model is characterized by the Hamiltonian

H = Q J);$)$;Sg ~ S), (1

where the $q are independent random parameters
taking the values + 1.' The concentration of $=-1
is denoted by c. In the absence of an applied field
the classical Neel ground state is simply given
by (S~') =$~S. For c =2 it exhibits no long-range

order. Although the classical thermodynamics
is trivial under the transformation 7~ =g~Sq, the
dynamics is nontrivial at the Heisenberg level
,since this transformation does not conserve the
spin commutation relations.

Here I consider the dynamics only within the
unrenormalized normal-mode approximation in
which the spin fluctuations are expanded to har-
monic order about the classical ground state.
The novel disorder element in the excitations is
clearly manifest in the effective noninteracting-
boson spin-deviation Hamiltonian resulting from
Holstein-Primakoff transf ormations,

H =pe, a, a, +Qt„[X„a,a,.+-,'(I-X„)(a, a, +a,a,)],

where e and t are now constants but &~& [= &(1+)&)&)] is randomly 1 or 0. Equation (2) is clearly diagon-
alizable in principle, but the interesting questions are (i) the density of states of the resultant modes,
(ii) their coupling to a laboratory-frame probe, and (iii) the existence of localized solutions. In this
Letter I concentrate on (i) and (ii) in the low-energy limit, but work is in progress on (iii) and will be

reported shortly.
A scattering experiment in a collinear Heisenberg spin system measures the quantity'

S(q, &u) =Iimlma(q, (u+ i&),
5~

where

h(q, E) =V 'Q&zb&z(E) exp[iq (R& —R, )] =Q;(&q;(E))~exp[iq (R& —R, )]

~„(E)=((S,';S,-)), +((S,-;S,')), ;

(4)

(6)

Zubarev Green's-function notation is employed and ()~ refers to a spatial disorder average. b, ,(E)
turns out to be particularly advantageous for perturbative analysis. Linearizing the equations of mo-
tion for the Green's-functions ((S',S )), ((S;S")), and substituting the Noel values for (S, ), yields
after some algebra the self-consistent equations for ~,

0
&~g =&~1 +~~i~v V~~~v (6)

where

Vp) = 4~p&(4p 5-) —V),

is the Fourier transform of

0~ 4S'[~(0) -~(q)]
O'- S'I~(0) - J(q)]] [~(0) —~~(q)] '

and p is arbitrary. Iterating, averaging, and resumming (6) yields

[(~(q,E»d ' =[~'(q,E)] '- ~(q, E),

where Z(q, E)is the infinite sum of terms of the form (Vb, ' ~ ~ ~ V)& which are irreducible with respect to
the E averages.

The perturbation analysis simplifies near the two limits of the relevant concentration range c =0 to &.

In this Letter I concentrate on these regimes and on the limit of small (j,E).
In the low-concencentration regime the convenient choice for p is unity so that to order c for any

(q, E) the self-energy is c times the sum of the irreducible terms of the form Vb,' ~ V for which each
V has a common vertex. The series is readily summed for any finite-ranged 4&,. but for simplicity I re-
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strict discussion to nearest-neighbor interaction, yielding

~(j,E)=c/zJ~, .s~,,'+z J's»'+2(1+zJs, ~'/4)gqexp(ig ~ E) +(J'&00'/4)E exp[&tl p — ')]}

x/(1 ~zJb, , '/4)'-zJ'h„'Q .b, '/16j '+O(c'). (10)

J (0)I'(q) =4&q I 3(a ~ 3 S~ (13)

where q is the Debye radius. For a simple-cu-
bic lattice this reduces to

The 6's label nearest neighbors and & is the lat-
tice coordination number. S(q, (u) follows immedi-
ately to order c for any (q, E), but I report here
explicitly only for long wavelengths —for small
q the dominant feature of S(q, ~) is well-defined
peaks at ~(q) =+ &(1+2c)q', where & is the stiff-
ness of the pure ferromagnet; the widths of the
peaks are proportional to eq" ', where d is the
lattice dimensionality. Note that in contradistinc-
tion to a diluted ferromagnet the addition of anti-
ferromagnetically coupled impurities stiffens the
spin waves. An analogous analysis can be ap-
plied to the case of ferromagnetic impurities in
an antif erromagnet.

Let us now turn to the less a priori predictable
case of the high concentration limit c = 2. In this
case the convenient choice of p is zero, so that
&' is different from that used above. A simpli-
fying feature in this case is the fact that the aver-
age of any odd power of ( is zero while any even
power is 1. Additional simplification ensues for
small (q, E) since it may be shown that the dom-
inant long-wavelength behavior of S(g, &o) is given
by retaining in ~ only the irreducible parts of the
series V&, &„'Vi~+ V~i &iiVi~&~D' &, etc. To
dominant order in (q, E) the series can be summed
competely. For dimensiond -3, S(q, ~) at long
wavelengths has peaks whose widths are less
than the means, indicating quasipropagation.
The peaks are located at

~(q) =+ S(l:J(0) —J(q)1J(0)/6"
= ~ (zW/I)'~'Sq ~ ..~,

where I is the standard lattice sum,

I =& 'Zql:I- J(0/J(0)1 ',
which for cubic lattices takes the following val-
ues'. simple cubic, I = 1.5164; bcc, I= 1.3932;
fcc, I=1.3447. In three dimensions the corre-
sponding half width is given by

analysis of a spin-glass8; that analysis must,
however, be modified somewhat in the present
case—for example, the collinearity of the spin
structure leads to two modes in place of the three
predicted for an isotropic system. The concept
of a nonzero spin stiffness is thus vindicated in
this case. The origin of the q' damping is, how-
ever, different in the two studies.

One can also compare the analytic results of
this work with computer results of Ching, Leung,
and Huber' for the simple-cubic Heisenberg-Mat-
tis model at the point (m/6)(1, 1,1), the only low

q value considered by those authors. Equation
(11)predicts that the position of the peak of
S(q, to ) will be reduced by 0.812 compared with
the value with I replaced by unity. From (14) the
width is predicted to be of order JS/4. Both
these predictions are in good accord with the com-
puter study.

From the q linearity of the long-wavelength
dispersion relation (11) it follows that, as for the
pure isotropic antiferromagnet, the zero-point
spin deviations will be small compared to S for
large S and the consequences of linearizing the
equations of motion will be qualitatively correct.

In less than three dimensions, it is known that
there is no stable cooperative order. Neverthe-
less, the linear analysis of (6) yields a one-body
problem which is of interest in its own right even
in lower dimensions, being nontrivial through the
disorder. Without further analysis one cannot
predict its relevance to true one-dimensional
random magnets but note that experiments on
one-dimensional pure antiferromagnets with
large spins" S show excitation spectra remark-
ably like those given by the analagous analysis of
the pure system, "the des Cloiseaux-Pearson
modes" being more relevant to low S." I report
only for d = 1. For small e the general results
reported above still apply. For e = &, however,
quite a different situation ensues, since lattice
sums such as (12) diverge. I find as the domi-
nant small-(q, u&) behavior of S(q, u) the following:

I"(q) = 0.0792~(q)'JS. (14)
S (qi (0) 4JS q (0

( @2 g)2 2 g p (15)

Note that the q dependences of (11) and (13) are
the same as predicted in a recent hydrodynamic

where ~ = (~2JS)~'. Thus, in this case we find
that the energies of the peak and the width of
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S(q, &u) are comparable, indicating strong damp-
ing. Note further that both the energy and the
width tend to zero as q-0, as expected from
Goldstone's theorem.

In dimensionality d & 1 the corresponding non-
separable random-signed bond problem is frus-
trated and even the classical ground-state prob-
lem is nontrivial. However, for d = 1 and near-
est-neighbor interactions frustration is absent
for this model also and the above analysis can be
extended. I therefore consider the model char-
acterized by

(16)

with the q; taking randomly the values + 1 with
probability 1 —c, c. With suitable correlations
between rl's and $ 's, particular manifestations of
(1) and (16) are identical but for random and in-
dependent distributions only the cases with c = &

are equivalent. For s~all c one can again calcu-
late S(q, co) exactly to order c. For small (q, ~)
I find that dominantly'4

S(q, (u)=(4S'Zq'(o "')
( ~, ~). . . (1V)

with o=c(J'S)@'. Thus we see that in this case
the damping is, strong even in the low-concentra-
tion limit and laboratory-frame modes are non-
propagating. The physical origin of the differ-
ence between the one-dimensional random-site
and random-bond problems is to be found in the
fact that in the former case the system maintains
an overall ferromagnetism except for the particu-
lar case c = ~, while in the latter any finite con-
centration of negative bonds removes long-range
order in the classical ground state.

The densities of states follow from integrating
S(q, ~) over Q. Several extensions of this work
can be envisaged. Within the linearized equation-
of-motion approximation one can mention the in-
vestigation of the localization of high-energy ex-

citations (to be reported), the development of a
coherent-potential approximation to extend the
range of this study of S(q, cu), and the extension
of the model to allow for noncollinearity of the
spins. In low dimensions, or small S, extension
beyond the linear approximation should be con-
sidered. Finally, it is to be hoped this study can
throw light on the more complicated problem of
spin-glasses.
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