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A system of nonlinear equations describing the single-mode dynamics of both the Ray-
leigh-Benard instability (RBQ and the Soret-driven instability (SDI) is derived. The sys-
tern predicts saturation effects on the steady-state vertical temperature (concentration)
gradient for the RBI (SDQ, and transient relaxation oscillations above a given threshold.
Good quantitative agreement is found with the experimental results. The possibility of
observing giant pulses analogous to those observed in solid-state-laser transients is
suggested.

Several experiments have been recently per-
formed on the dynamics of the Rayleigh-Benard
instability (RBI)' and of the Soret-driven insta-
bility (SDI).' The aim of this Letter is to provide
a theoretical description of both the RBI and SDI
transients, starting from the general conserva-
tion equations and exploiting a technique similar
to that used for the treatment of the laser insta-
bility.

The RBI arises in thin horizontal liquid layers
heated from below when the temperature differ-
ence across the layer hT, .' The less well-known
SDI may occur in two-component fluid layers,
above a critical temperature difference, when
the direction of the heat flux in the layer and the
sign of the thermal diffusion ratio k& are such
that the molecules of the heavier component mi-
gr ate upwards. '

The treatment presented here is limited to the
region not too far above threshold where a single-
mode convection pattern sets in. The starting
point of the calculation is represented by the
well-known equations expressing mass, momen-
tum, and energy conservation in a two-component
liquid mixture as they are written in Ref. 7.
Those equations reduce to the standard equations
for a single-component system by putting the con-
centration e of the heavier component identically
equal to zero.

I consider first the RBI case in a single-com-
ponent liquid. Following the single-mode assump-
tion, the velocity v, and the temperature T are
expressed as

v, =&(t)v(z) cos(k r),
T =7+A(z, t)+C(t)to(z) cos(k ~ r),

where T is the average temperature of the layer,
r designates a horizontal vector in the configura-
tion space, and k is the corresponding wave num-
ber. Etluations (1) and (2) differ from those in a
classical linear-mode analysis because the time

i = (h,/2a')Itc —(yh/ a)(a —a,),
C =-aB-h,yk'C,

h, vk'[&+ (h,y-k'/A, )C],

(4)

(5)

(6)

where the new variable h(t) = AT/a -A(t)(df/
dz), , represents the temperature gradient, aver-
aged over the horizontal plane, at z =0. The con-
stants y and v are, respectively, the thermal dif-

dependence of velocity and temperature is not ex-
ponential, and A(z, t) which represents the aver-
age over the horizontal plane of the reduced tem-
perature T —T is not assumed a priori to be a
linear function of z. In fact, when AT exceeds
the critical value LT„az-dependent convective
heat flux is generated in the liquid layer. Con-
sequently, the temperatur e gradient cannot stay
constant over the cell height.

The dimensionless functions v (z) and tv(z) are
taken here as known functions. ' They are indeed
the solutions of the eigenvalue problem which de-
fines the neutral stability curve. ' The two func-
tions take their maximum value at the midplane
z = 0. I assume that v(0) =tv (0) = 1, without loss
of generality since the dependence on the temper-
ature difference AT can be included in the time-
dependent amplitudes 8 and C. Consistently with
the single-mode approach, A(z, t) can be written
as

A(z, t) = (hT/a)z -A(t)f (z),

where a, is the height of the liquid layer and the
dimensionless function f (z) is determined by as-
signing v(z) and to(z).

By inserting Eqs. (1)-(3) into the general con-
servation equations, by neglecting the nonlinear
terms v,. sv, /Bx,. in the momentum conservation
equation, by eliminating the pressure, and final-
ly by averaging over the horizontal plane, the fol-
lowing set of dynamic equations for the three
variables A(t), C (t), and B(t) is obtained:
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fusivity and the kinematic viscosity, A, = AT/a,
and A, =AT, /a. The dimensionless constants h, ,
with j=1,. . . , 4, depend only on v(z), w(z), and
the product ka. By taking ka = 3.117, and by us-
ing the approximate expressions v(z) = 1 —8(z/a)'
+16(z/a)', w(z)=1 —4(z/a)', one finds h, =21, h,
= 38.6, h3=1.8, and h~=3.2.

The SDI case requires the introduction of a new
variable which is chosen to be the mass fraction
of the heavier component c. If the thermal dif-
fusivity y is much larger than the mass diffusion
coefficient D, as happens usually in liquid mix-
tures, and if fractional changes of c due to the
instability are small, it is reasonable to assume,
following Ref. 7, that the temperature distribu-
tion is given at any time by T = T + (AT/a)z. This
assumption makes the SDI problem formally iden-
tical to the RBI problem, with the concentration
c playing the role of the temperature. By repeat-
ing for the SDI the treatment outlined above for
the RBI, the same set of Eqs. (4)-(6) is derived,
where now C(t) is the time-dependent amplitude
of the concentration mode, ~ is the concentration
gradient at the midplane of the layer, and y, is
replaced in all three equations by D. Taking into
account the different boundary conditions, I put
v(z) = 1 —8(z/a) + 16(z/a), w(z) =1, and find h,
=h, = 10, h, = 1.' In the SDI case the minimum of
the marginal-stability curve occurs for k, = 0,
and the actual value of 0 is dependent on the finite
width of the cell. For small ka, h, =24/(ka).

The steady-state solutions 4„C,, and B, of
Eqs. (4)-(6) are A, =A, , C, = —[2h,/(h, h, )]"'(A,/
k)e"', and B,=(2hpgh, )' 'kgb' ', where e =(A,
—A,)/A, . Whereas the expressions for B, and

C, have already been given in the literature, "
the theoretical result for 5, is new. The fact
that the temperature gradient (concentration gra-
dient for the SDI) at the midplane of the cell takes,
above threshold, a value independent of ~T and
coincident with the critical temperature (concen-
tration) gradient shows that convective instabil-
ities present saturation effects very similar to
those found in the laser, where the population in-
version, above threshold, is locked to the thresh-
old value. Direct measurements of the steady-
state concentration gradient, averaged over the
horizontal plane, have been performed by Giglio
and Vendramini for the SKI in the mixture etha-
nol-toluene. ' The results reported in Fig. 1 of
their paper' show indeed that 4, = 4, above thresh-
old.

Equations (4)-(6) fully describe the transient
evolution of the instability toward the steady state

A = (h,/a')I —(qh, /a')(A —A, ),

i = (2Xk'h /A. ) (A -A.)I,

(7)

(8)

where I = (BC/2) represents the convective heat
flux (convective mass flux for the SDI) at the mid-
plane of the liquid layer. Note that, under the
assumption B = 0, I is proportional to C' and to
Q2

Some typical evolutions of 6 and I, obtained by
numerical computation for three distinct values
of c, are shown in Figs. 1 and 2. The initial con-
ditions are A(0) =A„ I(0) =I, , where I, is a small
value simulating the noise which triggers the on-
set of the instability. The curves relative to e
= 9 are particularly striking because the gradient
6 goes through a negative peak and the convec-
tive flux I h3s an overshoot 4 times larger than
the steady-state value. Figure 3 reports the evo-
lution of I when the system at the steady state
above threshold is subjected to a sudden increase
of e. The values of h,. appropriate to the RBI
case have been used for all the computer runs.
The most interesting and new feature of the tran-

starting from an arbitrary initial condition at t
= 0. In many relevant cases the description of the
transient can be considerably simplified by using
the so-called adiabatic approximation which is
based upon the comparison of the different time
scales involved in the problem and the consequent
elimination of the faster variables. I discuss
here for simplicity only the case v/g» 1 (large
Prandtl number) for the RBI and v/D» 1 for the
SDI, since these are the cases investigated in
all the experiments mentioned above, except for
Ref. 3. Under these assumptions, the "fast"
variable in B, and the variable showing critical
slowing down is C. In the region very close to
threshold (e « I), also the dynamics of A is fast
in comparison with that of C, and therefore both
B and Dean be adiabatically eliminated by putting
B = h = 0. The resulting dynamic equation for C
shows the well-known cubic nonlinearity, and al-
lows one to compute the time constant 7 for the
decay of small deviations from the steady state.
One finds 7, =~,e ', where r, =(yk' h, ) '. In the
RBI case v, =a'/(17. 71'), in good agreement with

previous theoretical'" and experimental' results.
Slightly above threshold, when & cannot be con-

sidered much larger than the characteristic evo-
lution time of the temperature (concentration)
gradient which is (yh, /a') ', it is not possible to
eliminate adiabatically 4. The single condition
B=0 leads to the following pair of equations:
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FIG. 3. Time evolution of the normalized convective
flux I = (h, /2XE, h2)I starting from the initial condition
I'{0)= & —&, with & =6 and 24.

FIG. 1. Time evolution of the normalized tempera-
ture (concentration) gradient 6/A, starting from the
initial condition 6(0) =Do for three distinct values of s
=(&0-b~)/b~; a ~1 (dot-dashed line), a =4 (dashed
line), and @=9 (full line). The normalized time t' is
defined as t' = (g h, /a )t.

sients is the damped oscillatory behavior shown
for not too small e. Linearization of Eels. (7)
and (8) around the steady-state values provides
the threshold ~, for the appearance of oscilla-
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FIG. 2. Time evolution of the normalized convective
flux I' = (h&/2yA, h2)I, starting from the initial condition
I'(0) =10 ' for the same three values of c used in Fig. 1.

tions, e, =h,/(8a'k'h, ), the expression of the per-
iod of the oscillations, T„,= (2a'k'h,

hfdf')

'i'(a'
)()(e —e, ) 'i', and the damping time of the oscilla-
tions, ~n = ()(h,/a') '. Damped oscillatory tran-
sients have been experimentally observed both in
the RBI' and the SDI.' All the qualitative fea-
tures are correctly predicted by Eels. (7) and (8)
as one can judge by comparing Figs. 1, 2, and 3
with the figures presented in Refs. 1, 4, and 5.
The empirical law ~„,=200~ ' ""'proposed in
Ref. 1 for the range 5&a(40 is in good agree-
ment with the expression for 7„,written above,
taking into account that ~, = 0.27 for the RBI case.
Preliminary measurements of 7„,'for the SDI in
the range 2 (e & 8 also give the predicted power-
law dependence. "

For large values of e, no adiabatic elimination
can be performed, and the system may even show
persistent oscillations for s) e«, where s« -—vhg
()(h,) for large v/)(. Persistent oscillations have
indeed been observed in the RBI experiment of
Ref. 1 with a threshold ~« ——220 for a liquid hav-
ing v/)( = 180, in good agreement with the theoreti-
cal value ~« = 230. The irregular oscillations ob-
served by Ahlers" in the stationary regime of the
RBI have a threshold, c«-—2, which is also of
the expected order of magnitude, taking into ac-
count that v/), = 1 for that experiment.

It is known" that higher modes appear in the
RBI only for c & 2, and that the amplitude of the
fundamental mode is still predominant up to ~
= 10. It is, however, possible that some relevant
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features of the dynamics of convective instabili-
ties are fairly well described by a single-mode
approach even for e & 10.

It should be noted that Eblis. (4)-(6) have the
same structure as the equations derived in the
so-called Lorenz model' of fluid instabilities.
Discussions of the Lorenz model have been al-
ways concerned with the transition to turbulence,
whereas the emphasis in this paper has been on
the quantitative prediction of yet unexplained phe-
nomena observed in the HBI and SDI transients
in the region of regular roll convection. The
analogy of the Lorenz-model equations with the
Maxwell-Bloch laser equations has been consid-
ered by Haken. " A very interesting point open
to investigation is the possibility of observing in
convective instability experiments phenomena of
the type already studied with the laser, such as
the giant or superradiant pulses in the transient
regime.
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Detailed studies of spectra from the ISX-A (Impurity Study Experiment) tokamak at the
Oak Ridge National Laboratory have shown that certain oxygen-ion lines appear too
anomalously intense to have been excited solely by electron collisions. These results
are interpreted as being due to charge transfer and suggest the necessity of incorporat-
ing this mechanism into analyses of tokamak plasmas.

Although electron collisions usually dominate
atomic processes in tokamak-produced plasmas,
charge transfer from hydrogen atoms should
theoretically constitute an important recombina-
tion process for certain impurity ions. The
charge transfer takes place into excited states;
and, in, some circumstances, excitation via
this mechanism should dominate excitation by

electrons. Charge transfer has previously been
observed through the sudden increase of radia-
tion from the n = 3 -n = 2 transition of 0"when
10-30-keV hydrogen beams are injected into a
tokamak'; but detection of this process has not
been reported for the more typical, noninjected
discharges where the temperature of hydrogen
atoms is less than I keV and their ambient cur-
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