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We propose a real-space renormalization-group technique to treat dynamic critical
phenomena in two-dimensional Glauber-Ising models. The invariant form of the time-
dependent probability distribution is found within linear response theory and an estimate
of the dynamic exponent z is given.

In recent years much effort has been expended
in extending the renormalization-group (RG) ap-
proach to critical dynamics. ' ' This has been
done by several methods based principally on ex-
pansions about two' and four dimensions" using
a generalized Langevin equation of motion, "
equivalent Lagrangian methods, ' or the Fokker-
Planck equation of motion. ' All the above meth-
ods rely in an essential way on the separation
into slow and fast modes which can be performed
in continuous-spin models in momentum space.
Up to now very little work has been done with dis-
crete-spin models in real space and there is no
systematic approach which gives reasonable
agreement with known results in two dimensions. '

In this Letter, we present a general formula-
tion of a real-space RG" to treat the critical
dynamics of such discrete-spin models. Our
method is an analytic one capable of dealing in
a systematic manner with a multiplicity of time
scales which appear in transient and memory ef-
fects in contrast to previous attempts to formu-
late a real-space RG. There is uncertainty""
in the value of the dynamic exponent" z even in
the simplest model of purely dissipative dynam-
ics of the two-dimensional Ising model. Since
the real-space RG can give rather accurate re-
sults for the static critical behavior, ' we believe
that our method is potentially capable of compar-
able accuracy for the dynamics. The best result
we have obtained to date is for the Glauber-Ising

model" in two dimensions within the second-or-
der cumulant expansion' on a triangular lattice:
z = 2.19. This lies within the range of previous
estimates by high-temperature expansions' and
Monte Carlo methods" and is a considerable im-
provement over the value obtained in Ref. 6,
which does not obey the inequality z ~ 2 —g."
Further results obtained using the method de-
scribed below are (i) the exponent for the decay
of energylike perturbations, zs ~2. 5 (first-order
cumulant approximation), and (ii) a rederivation
of the exact results in one dimension, z = 2."'
A fuller account will be presented in future pub-
lications and we can see no insuperable difficulty
in using the method to extend other formulations
of the static RG to critical dynamics and to study
more complicated dynamics with conservation
laws"

The equilibrium properties of the two-dimen-
sional Ising model are determined by a reduced
Hamiltonian' H = —H/kT =+K,S,(cr), where the
S,(v) a,re extensive functions of subsets of the
spins o,. = +1. The dynamical model we study is
that proposed by Glauber" in which the spins are
assumed to flip independently in time ~. The ki-
netic equation obeyed by the probability distribu-
tion P(0, t) is

7dP(&x, t)/dt= —1.(a)P(o, t)

=-Z, (& -P)&, (&, )P(&, f),
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where the operator P, fl.ips the spin a, , P,f(a, )
=f( -a~). The transition probabilities Wz(a, . ) are
subject to the condition of detailed balance which
ensures that, as t-~, the probability distribu-
tion reaches its equilibrium form P, (a) = exp(H]/
Z, where Z is the partition function. We choose
the form

ll' (a )= [P, (- a )/P, (a )]''. (2)

where A and 0 are matrices which are defined by

If the Hamiltonian contains only nearest-neighbor
interactions,

H=K, P a,. az,

then ~,. (o,. ) = exp j-E,a&Q, v j, where i and j are
nearest neighbors. " One could consider other
forms of S', but it can be shown that the only dif-
ference is in transient and memory effects and
wil1. not affect the dynamic exponent z. This par-
ticular choice of %eliminates all such problems
up to first order in the cumulant approximation.
They first appear at second order.

We consider small deviations from equilibrium
within linear response theory, described by a
function y(v, t) =P(a, t)/P, (a), where at t = 0, p(a,
0) = 1+hgv, The probability distribution can be
parametrized by a time-dependent Hamiltonian
P(a, t) —=explH(a, t))/Z(t) where, within linear re-
sponse, Z(t) = Z+ O(h'). Thus, the normalization
of P(a, t) is independent of time and can be ignored
in the rest of the discussion. The time-dependent
Hamiltonian can be parametrized in exactly the
same way as the equilibrium Hamiltonian except
that the coefficients E, will be functions of time.
They can, in principle, be determined from the
master equation (1) with a given initial condition.
Within linear response, the function cp(a, t) may
also be parametrized in the form 1+ h, (t)ga,.

+ h, (t)po,. v,. a,+. . . —= 1+0(a) h(t).
The renormalization-group transformation is a

standard static one defined by

exp1H'(p)j =Q, T(p, a) exp(H(a)j

with a suitable choice of T( p., a).' Since the time-
dependent Hamiltonian H(a, t) contains the time t
as the corresponding equilibrium ones. However,
the properties of the master equation (1) under
the RG will determine how the characteristic time
v scales. Equation (1), which can be written as
r(d/dt)O(a) h(t) = —j(a)O(a) h(t) with g(a)
=pp', .(aL)(1 p,.), is transfor-med under the RG to

7(d/dt)O(tJ. ) ~ Ah(t) = - g'(p)O(p) Qh(t),

the RG transformation. If A and 0 commute, the
eigenvector of AO ' with the largest eigenvalue
will describe the slowest mode. However, in
general they will not commute and then one must
apply the RG transformation a large number of
times. We then see that the slowest mode will
scale with an exponent z given by b'= A/cu, where
A. (cd) are the largest eigenvalues of A (0) and b

is the space rescaling factor. Since it can be
readily seen that higher derivatives in Eq. (1) de-
cay rapidly under the RG, this noncommutivity of
A and 0, with W given by Eq. (2), is the only re-
maining memory effect and first appears at sec-
ond order.

We will now put these ideas into practice using
as an illustration the RG on a square lattice in
the first cumulant approximation. This example
has the advantage of demonstrating the essential
ideas but avoids the technical complications met
at higher orders and with different choices of
W(a).

Since the W,.(a,.) are determined by H(a) in Eq.
(2), one can make a consistent approximation of
both the Hamiltonian the time evolution operator
L(a). Unfortunately, this approximation leads to
rather poor results because y(a, t) is an odd per-
turbation. It is well known that the first-order
cumulant approximation gives negative values for
the magnetic exponent P/v. '" We find a dynamic
exponent'"" ~ =2.7 which is rather higher than
other estimates, but there is a great improve-
ment at second order. However, the kinetic ex-
ponent" 6„=z—2+ g =0.4, which is a measure of
the deviation from the conventional theory, "is
more in line with other estimates"" which lie
in the range 0.1 & 5„&0.6. At second order we ob-
tain 5„=0.49.

The renormalization-group transformation is
defined by choosing T(p, a) in Eq. (3) by'

T(lj., a) =g„[1+p„t„(a)]/2 -=Q T„, (5)

where the product is over the four-spin cells la-
beled e and p = + 1 is the cell spin (see Fig. 1).

We take

tgv)= P a,.(3 —g a,.)/8
jE n jgo'.

(6)

following the suggestion of Barger" who showed
that, within the first-order cumulant approxima-
tion, this form yields the lowest upper bound for
the free energy. Let us now assume that the rele-
vant part of the function y(a, t) can be written as
1+@(t)gv, This implies that, at time t, the
system is in thermal equilibrium with an effec-
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So far this is exact, but to compute the trace in

(9) we turn to the first-order cumulant approxi-
mation' and find

h(t) p8Z, "(L,/Z, ) exp{(Vs)),

where

Z = Q T P', L, = QtBPs~'l,
own a

(IO)

FIG. 1. Spin and cell lattice. Double (single) lines
denote intracell (intercell) interactions in P„(g). The
slashes denote omitted interactions in Pg~'~ and Vg&'~.

~»'(~, t)/&t

= 2h(t) Q, g~P „'T~exp{Vjg & W,. o, , (7)

where P'(p, , t) =Q,T(p, o)P(o, t). We concentrate
on a single spin o„ i.e. , on a single term in the
sum over j in Eq. (7). Divide the intercell inter-
action into two parts V = V&+ V&, where V& is the
interaction between the cell containing 0, , which
is labeled P, and its neighbors, and V& is the
rest. Using the properties of W,. (o,.) we have the
relation

Ps'IV,.exp{V&) =Ps~'lexp{Vs 'l), (8)

where the superscript (i) means that all bonds
connected to site i are omitted as in the figure.
Now the only remaining dependence on o,. in the
term under consideration is of the form T&o, so
that, when we sum over o, = +1, the only surviv-
ing contribution is t& p&o,. /2 and we obtain

h(t)ps+, g „'T P „'tBP&&'o,exp{VB+ Vs~'g,.

(9)

tive field h(t) whose time evolution is determined
by Eq. (1). We will show later that Qo,. is the
only relevant operator in our approximation.

The RG transformation of Eq. (1) is now straight-
forward. Suppressing normalization factors, we
write the equilibrium probability distribution
P, (a) =Q„P„'(o)exp{V(cr)), where P „' is the intra-
cell part and exp{V(o)j the intercell part 'Ap-.
plying the RG transformation we have

where the sum is over all nearest-neighbor cells
excluding the cell P containing o, However, us-
ing the cell analog of Eq. (8), we find

Z.'exp{(V )) =P. '(V)& '(t ), (12)

where P, (p) is the new equilibrium probability
distribution of the variables and W&'(p) the new

transition probability obeying Eq. (2). Summing
over the four spins in each cell we obtain the re-
normalized master equation

~»'(V, t)/st= —CL'(V)P'(t, t)

where L'(p) is of exactly the same form as L(v)
but with rescaled interaction parameter K, -K, '.
The constant C = 2h(t)L, /h'(t)ZO is independent of
time because h'(t) is the new magnetic field at
fixed t and is given in terms of h(t) via static RG
as h'(t)/h(t) = A„.'" In our formulation, the
length is rescaled by a factor b = 2 at each stage
and the constant C can be absorbed into a redefi-
nition of the time scale v- r'= v/C. The dynami-
cal exponent is determined by b '= C yielding z
f—2.7.

Since our renormalization of the master equa-
tion (1) with an assumed deviation from equilibri-
um of the form p(o, t) = I+h(t)go, . reproduced a
new p(p, t) of exactly the same functional form,
this verifies that this is the appropriate fixed-
point form and confirms dynamic scaling in this
approximation. In this example the matrices A
and & in Eq. (4) are scalars and there are no

memory effects which have been eliminated by
our choice of W(v). We have checked explicitly
that terms which are created by the time evolu-

A is the number of cells, and (. . . ) denotes an
average over the a with weight function D 'T P '.
All of the quantities appearing in the expression
(10) are easily calculated. Note that the contri-
bution from V&

'& in (9) vanishes in this approxi-
mation by symmetry considerations. The aver-
age (V&) is precisely that appearing in the cor-
responding static RG and is the new cell interac-
tion,

«s) =&'Z'~.t, ,
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tion" of P(v, t) reduce after a single RG step ei-
ther to the form assumed in this work or to
terms of second order in the intercell interaction.
Of course, if the RG is performed to higher or-
ders in the cumulant expansion, more terms
must be used in q&(o, t) and the effective time-de-
pendent Hamiltonian and transition probability be-
come more complicated than the simple nearest-
neighbor form.

We have used this method in the second-order
cumulant approximation and confirmed dynamic
scaling to this order. The calculations are
lengthy and memory effects unavoidable. Details
will bt published elsewhere.
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Energy transport in molecular solids is investigated using a picosecond transient-grat-
ing technique. A model is presented which directly relates the rate of energy transport
to the experimental observable. The diffusion coefficient for singlet electronic excitation
transport is reported for pentacene inp-terphenyl. Acoustically induced optical absorp-
tion effects are also observed.

Intermolecular interactions in molecular crys-
tals give rise to electronic excited-state energy
migration. In pure crystals energy transport may
be excitonic' in nature, and in disorded or im-
pure crystals it may be due to long-range reso-
nant transfer. ' In this paper we present the first
results from a new method which utilizes a pico-
second transient diffraction grating to directly
probe the time-dependent position of excited

states in the bulk of a crystal. As such, this
method allows determination of the rate of ener-
gy transfer along any crystallographic direction,
and thus the influence of intermolecular interac-
tions, ' molecular orientation, ' impurity effects, '
and exciton-phonon coupling' on the transport
process can be directly studied.

In this experiment, two time-coincident, Gaus-
sian picosecond excitation pulses of wavelength
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