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Cu-implanted Si crystals were irradiated with Q-switched ruby-laser single pulses.
After irradiation with energy density in excess of 1.0 J/cm, the Cu atoms accumulate at
the sample surface. Thermal annealing in the 500—800 C range casues a migration of Cu
inside the specimen, in agreement with diffusion coefficient and solid solubility values.
The results indicate the formation of a liquid layer induced by laser irradiation. The sol-
id-liquid interface movement during freezing qualitatively justifies the observed surface
accumulation.

High-power laser pulses were used recently to
anneal out the damage in ion-implanted semicon-
ductors. ' The transition of an amorphous layer
to a single-crystal structure was ascribed to the
laser-induced melting of the surface layer. "Li-
quid phase epitaxial growth on the underlying sin-
gle-crystal substrate occurs during the subse-
quent freezing. Changes in the ion-implanted pro-
files were also accounted for by a liquid forma-
tion. The time involved in the Q-switched laser
irradiation (-10 '-10 ' s) cannot in fact allow de-
tectable atom migration in the solid phase with

the usual activation energies.
These effects could be also interpreted in terms

of ionization-enhanced diffusion. The high densi-
ty of absorbed photons with energy greater than

the band gap produces a large amount of broken
bonds between nearest-neighbor atoms or non-

equilibrium hole-electron pairs which can en-
hance the mobility of a defect. The observed
growth rates and impurity diffusion coefficients

could be then described in terms of kinetic proc-
esses in a solid medium with suitable low values
of the activation energies, without invoking any
liquid formation.

In the present work we show that Q-switched
ruby laser pulses with power densities higher
than 20 MW/cm' and 50-ns duration induce liquid
formation in ion-implanted Si.

Silicon single crystals, 300 pm thick and (100)
oriented, were implanted at room temperature
with 70-keV Cu' to a fluence 2X 10" ions/cm'.
After implantation some samples were irradiated
with pulsing ruby laser (A = =0.694 pm) in the en-
ergy density range between 1.0 and 3.0 J/cm'.
Other samples were thermally annealed, under
vacuum condition (-10 ' Torr), in the tempera-
ture range 500-850 C for isochronal steps of 30
min. MeV He particles scattered at 102' away
from the beam incidence were used to analyze in
depth the Cu distribution. The energy-to-depth
conversion was obtained using stopping cross sec-
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the sample for a time interval comparable to the
pulse duration (50 ns). The freezing starts at the
end of the pulse and the solid-liquid interface
moves back to the sample surface.

The freezing rate and the ratio between the im-
purity equilibrium solubilities in the solid and
liquid phases determine the final dopant profile.
The equilibrium segregation coefficient, kp of
Cu in Si (Ref. 15) is 4x 10 ' so that it accumu-
lates in the liquid phase. The described kinetics
of the solid-liquid interface then justifies the sur-
face accumulation of Cu after laser irradiation.

The interface velocity during the freezing proc-
ess is determined by the rate of dissipation of the
latent heat and then by the temperature gradient
along the sample. By the previous calculations'
we get an average temperature gradient of about
10 K/cm in the proximity of the solid-liquid in-
terface. This value led to a freezing rate of
about 200 cm/s, which is at least four orders of
magnitude larger than those of crystal growth
from the melt or zone refining. "

The effective distribution coefficient approaches
1 with increasing growth rate if the melt is large
enough. In our case the existing treatments of
segregation cannot be applied because the thick-
ness of the transient region exceeds the total
melted length by less than 1 p,m. We calculated
the final profile according to the following as-
sumptions: The liquid was divided into steps of
thickness M, , solidification of the first layer oc-
curs in time interval b,t= M/V; the advancing
solid-liquid interface rejects in the nearest li-
quid layer, bx, „ the impurity amount ci(x,)(l
-k, ) M,. per unit area, ci being the impurity
concentration in the liquid phase. These impuri-
ties are allowed to migrate with a diffusion coef-
ficient Di=10 ' cm'/s in the remaining liquid
region for a time interval ht. The boundary con-
dition is ci= cost at t=0. The thickness ~ used
in the calculations was smaller than 2Di/V, i.e. ,
100 A, and the diffusion equation was solved for
time intervals much less than At. This approach
is similar to that of Tiller et gl."and the results
are summarized in Fig. 3 where the fraction of
impurities accumulated in the last 10% of the ini-
tial liquid-layer thickness is plotted as a func-
tion of the equilibrium distribution coefficient k, .
The results are shown for 2000 A and 20 pm, to-
gether with the curve corresponding to a negligi-
ble interface velocity. In the 2000-A-thick liquid
layer the amount of Cu segregated in the last 200-
A surface region reaches the 90 j~ for kp values of
10 ' while in the 20-pm layer the corresponding

1248

100%

80-

c 60

Qru 40—
rQ

20-

10

i0 i0 10 i0

kp

FIG. B. Calculated amount of Cu accumulated at the
surface (10% of the total liquid thickness) vs the equilib-
rium distribution coefficient ko for two liquid layer
thickness, 2000 A and 20 pm, and for a freezing rate
of 2 m/e. The curve calculated for a negligible inter-
face speed is also shown (dashed line).
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amount in the last 2000 A is less than 20~j~. These
calculations justify the strong segregation effects
detected for Cu where k, is 4& 10 '.

In conclusion, laser irradiation of Cu-implanted
Si at energy densities larger than 1.0 J/cm' caus-
es a melting of the surface layer with a conse-
quent accumulation of Cu atoms at the crystal
surface during the solidification. The effect is
related to the low value of the segregation coeff i-
cient. Moreover the high growth rate, several
orders of magnitude higher than the normal val-
ues, allows segregation only for impurities dis-
tributed in liquid layers a few thousand angstroms
thick, as shown by calculations. Thermal anneal-
ing causes instead a very fast diffusion of Cu all
over the Si sample.
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The broad line shape for absorption due to transitions between heavy-hole and spin-
orbit bands in electron-hole droplets in Ge is explained. The calculation uses multiple-
scattering concepts to remove the divergences of ordinary perturbation expansions in
the dynamical Coulomb interaction. The absorption resembles the free-hole theory at
low frequencies, is sensitive to both band anisotropy and screening approximations at
intermediate frequencies, and is independent of screening at high frequencies.

Free-particle theories of line shapes assume
that electrons and holes occupy single momen-
tum states inside renormalized conduction and
valence bands. This idea has successfully ex-
plained the luminescence line shape of electron-
hole droplets in indirect-band-gap semiconduc-
tors where phonons take away the momentum dif-
ference between initial and final states. ' For
direct transitions the spectra are expected to
show sharp structure because momentum must
be conserved. Therefore, any physical effects
which change particle momentum will more pro-
foundly affect line shapes for direct transitions.
Fits to transitions between heavy-hole and light-
hole bands responsible for the plasmon width in
electron-hole droplets (EHD) require broadening
parameters of several meV. ' The gain spectra
of highly excited direct-band-gap semiconductors
are better fitted by an assumption of no-momen-
tum conservation. ' Thus, free-particle theories
are less successful for direct transitions.

In this Letter, we discuss the observation by
Pokrovsky and Svistunova. ' that absorption due
to transitions between the heavy- and light-hole
bands and the spin-orbit-split band in Ge is

much broader than predicted by free-particle
theory (Fig. 1). One approach to this problem
would be to follow Landsberg' in broadening the
initial and final states with their random-phase-
approximation (RPA) widths. However, this
would predict a slowly decreasing cross section
below the free-particle threshold in qualitative
disagreement with experiment. A second ap-
proach would be to calculate the correction to the
free-particle theory to first order in a dynamical-
ly screened Coulomb interaction. The calculation
might include the same diagrams which Brink-
man and Lee' applied to the gain spectra of di-
rect-gap semiconductors. Unfortunately, this
leads to divergent answers for our problem be-
cause it is kinematically possible for the inter-
mediate states to be on the energy shell.

We present the first explanation of inter —va-
lence-band transitions in EHD and in degenerate-
ly doped p-type Ge. The absorption is calculated
including the physical processes which create
single plasmon or particle-hole pairs. An ap-
proximation motivated by multiple-scattering
theory is introduced which removes the diver-
gences of ordinary perturbation expansions. The
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