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We derive simple expressions for the collisional redistribution function which are not
restricted by impact theory and hence encompass the cases of excitation and detection
far from resonance. For an isolated resonance line, the redistribution function depends
only on quantities already involved in the absorption profile. This implies simple relations
between results obtained from light-scattering experiments and those obtained in emission
or absorption spectroscopy.

In recent years increasing theoretical'"' and
experimental' ' activity has centered on the study
of the redistribution of resonance radiation by
collisions. While this problem has for long been
prominent in astrophysics, ' it has received re-
newed interest in laboratory physics with the ad-
vent of tunable dye lasers. Frequency- selective
laser scattering has indeed been revealed as a
powerful tool for gas and plasma diagnostics as
well as for the determination of atomic and mo-
lecular properties, interatomic potentials, etc.

The theoretical framework in which the redis-
tribution problem has generally been treated is
the impact theory. " As was stressed repeated-
ly,"this theory imposes serious restrictions on
the frequency domain of both the incident and
scattered light. Indeed, the validity is limited
to frequency separations from the line center
smaller than typical inverse collision durations.
Hence this theory does not account for excitation
nor detection far from resonance.

The breakdown of the impact theory on the line
wings has recently been demonstrated experi-
mentally"' by displaying a strong asymmetry of
the fluorescence signal with respect to the sign
of the laser detuning around the resonance fre-
quency. According to the predictions of the im-
pact theory, the signal would not depend on the

sign of the detuning.
A recent approach aimed at a more general

theory' seems to be of limited validity in the fre-
quency region beyond the impact domain because
it leads to a fluoresence line profile which in
some cases of far-wing excitation may become
partly negative. This is to be traced to a factori-
zation, in Ref. 3, of the time-evolution operator
corresponding to separate time intervals in which
collisions are treated independently.

Our purpose is to establish an expression for
the redistribution function in the framework of
quantum electrodynamics and quantum statistics.
We define this function formally as the probabili-
ty per unit time, P(a, &), for an atom (undergoing
collisions) to scatter one present photon from
mode a into mode &. This notion makes sense
for weak radiation intensities because the scatter-
ing probability in the presence of any number n,
of photons in mode a is then just proportional to
?lgQ

Let us consider one atom (A) embedded in a gas
of N perturbers (P) and a radiation field (R).
Using obvious notation, we write the Hamiltonian
of the whole system APR as

H =H~+ Hp+ Hg +V~+V~ +Vp~.

To write transition probabilities we will em-
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ploy the notation of Liouville-von Neumann space
(2).' " This is a Hilbert space spanned by the
linear operators U, now denoted by IU», which
act on the usual Hilbert space + of states. If
( Ix„&j„ is a basis of 3I', (llx„&(x I))]„=( I x„x„~&&j„
is a basis of ~. As the scalar product we define
((IVIU&) = Tr(IV U). Operators acting in 2 will be
denoted by a caret over them. Examples of such
operators are the commutators

A A

H =[8, ], Hg =[Hg, ],

~(a, b;t) =&(P,I» p(t))&, (2)

where Tr»p(t) is the partial trace over the AP
system of the total density operator p(t) which
has initially the form p(0) =P„JP, with P, = Ic)(cl-
for any mode c. The quantity Tr„~(t) can be ob-
tained following exactly the line of a previous pa-
per" treating pressure broadening in the frame-
work of the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) formalism. We may take over di-
rectly the result of Ref. 13 after extending the

V~@ =[V~s, ~ ~ ], etc. ,

called Liouville operators.
In ~-space formalism, the probability for a

photon of mode b to be present at time t is given
by

(Tr&P(s)» =G(Tr~p(0)&& =Glp~(0)P. &&, (3)

where p„(0) is the initial atomic density operator,
and

6 =-[s+i(H~+Hs+V~)+@ ' (4)

is the propagator of the AR system, in which the
effect of perturbers is summarized in the colli-
sion operator

atom system there to our system AR and substitu-
tin our p for the quantity E defined there. In addi-
tion, we have to note that the approximation on
which the truncation of the BBGKY hierarchy is
based, namely, the exclusion of simultaneous
strong collisions, includes in our case that the
interaction between the perturber gas and the ra-
diation field only matters for a perturber which
is very close to the. atom. (This becomes signifi-
cant on the far line wings beyond the Weisskopf
frequency corresponding to the perturber ground
state. ) In this Letter we will neglect this interac-
tion altogether and also take Eq. (4) of Ref. 13,
just without the term representing initial correla-
tions between the atom and perturbers. This is
again an approximation exlcuding the very far
wings (a~ »kT/5). If we denote Laplace trans-
forms of functions f(t) by f(s), Eq. (4) of Ref. 13
gives us

K=N((I, ~V„,[s + i(H~+ Hs +V~ + H& + Vg&)1 V~&l P&&&,

I, and p, being the unity operator and the free-
particle density operator in the factor space of

corresponding to perturber 1.
Considering the special case that the atom is

in its ground state ly& before and after the transi-
tion, p„(0) becomes ly&(yl, and Tr„~ becomes
(ylTr~ly&. The Laplace transform of (2) then
reads

I (a, b;s) =((yb, y bt[G)ya, yta &).

From this the redistribution function is obtained
as

p(a, b) = lim[m(a, b;t)/t]

iIm[sVv( a, bs) .]
S~O

We evaluate this expression for two different
model atoms, both assumed to be at rest: (1) a
bvo-level atom, having a ground level ~& and
one excited nondegenerate level , influenced by
phase-changing collisions; (2) a three-level atom,
having a ground level & and two excited levels
(o, and ~,~, one of them (~,~) being forbidden for
radiative' transitions to +&. We choose 0- I,
-cu, .l«~, -~& and assume that collisions affect
the excited levels only through transitions be-
tween states Is& and le'&.

Since the treatments of the two cases are simi-
lar, we will give details of the calculations only
for case (1) and just indicate the result for case
(2).

We define projection operators acting on the
factor space &~ of ~ which corresponds to sys-
tem &~:

P, -=1~0''0'&&&&«e'0'I, P -=Z.,lyxy'X'&&&&yxy'~'I, P'=- Z.[lyxe'0"&&&&yx~'0"] +le0y'x'&&(&e0ytx'I],
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where the sums in these expressions are over single-photon modes x and y. The projector P&+Py +P'
selects a subspace &~ of &~ in which the radiation vacuum l0) is associated with the excited state
I&), single-photon states Ix), ly) are associated with the ground state ly), and multiple-photon states
are neglected. In the following we will restrict ourselves to this subspace and use corresponding ma-
trix representations of the operators G ', Q, etc.

The matrix of G ' involves that of K which we evaluate to second order in V„s. [Note that neglecting
V„s in Eq. (5) leads to the results of Ref. 3.] The zero-order term is the collision matrix of the ab-
sorption profile. " It is particular to case (I) that it has only the following nonvanishing matrix ele-
ments: K„„=K„g„y*=-K„=K,"+iK„'=—K(~„,), where we have used the short-hand notations

((yxetOt)M(yyetO ))—=M,„, ((yx& 0 IMle0y y ))=-M„g, etc. ,
and (Jo p 40 (Jo p with (d p

=—co, y
=, —

y being the resonance frequency. The term of fir st order in V~
vanishes, and the second-order term has the elements E„,=K„g,g* and K„„~= E„g„*.As examples, we
indicate

g (&& IV~, 1
m~')(~~') V„,l&~) py

S + Z(Rygi +R„o)
(8a)

(eA. [V„,i eA. ' )(eA. ' i V„,[eh.)p„
" zz~[s+ i(coax. +(ufo)][s+ i(oxx.][s+i(+ggt+~~o)] (8b)

Here X and A.
' label free one-perturber states and leA ) denotes the scattering state associated with the

free state le%). In (8b) we have put (yAxlV„& I ep0) = (yxl V„sleO) 5),„=V,*&q& because of the neglect of the
interaction between the perturbers and the radiation field. Expression (8b) may be further simplified
by decomposing it into partial fractions. This yields [with K(0) =K,]

K„,= (V„*V,/&u„„)[(K„-K,)/cu„, —(K, -K,)/~„,].
Similarly we obtain [with K(&u„„)—= K&„„)]

K„g„=(V„V~/(cryo(u„o) (K„*+K„-Ko —K(„„)),
provided that we replace I&X) by leg in elements like (&X'IV»le%.), which amounts to a second-order ex-
pansion in V» of some of the off-diagonal elements of K This approximation limits our treatment to
frequency separations below the Weisskopf frequency, except when at least one of the two frequencies
co, or &, is inside the impact domain, in which case elements like Ky, vanish.

We now turn to the matrix inversion G"'- G. A straightforward application of Zwanzig's projection-
operator method' yields

A A A A + A A A A ~ A ~ A A h A

Py GPy = Gy- Gy V&~G'V~Gy + Gy V&zG'V~G&V~pG'V~pG» (9)

where

6& -=P&[s+iP&(H„+Hs)P&] ', G'= P'[s+iP'(H„-+Hs iW)P'] ', —

G, =P, [s +P, VgsG'—V~P, ] ', W—= K+R, R =P'V~GyV~P'.
rh

R has the meaning of a radiative width operator. Its nonvanishing matrix elements are easily derived
to be

R„, =Rd„t*=Q, V, *V,/(s+ i&a„,)
—=R„=R„"+iR„'=R(&v~0), R»t=R„t, = —V,*V~*/(s+i~»)

Next we use the Dyson equation for G to write in the second term on the right-hand side of Eq. (9)
G' = G~'- G~'(W„- W O'W )G, ', and in the third term G'V~P, = G~'V ffP„P,V~G' =P, V~q G~', with

Pa A A h h A A A A A h A

V,ff ——V~+ —P'W„G'V~P, —P, V~G'WQ',

where subscripts d and n refer to the diagonal and off-diagonal parts of the corresponding matrices,
respectively. Equation (9) then takes a form which is suitable for approximations based on the fact
that the width functions K(b, &u) and R(4e) are much smaller than the characteristic frequency intervals
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A A A

v~ and &„over which they vary noticeably. We have found that approximating W„G'W„, Vgf f and G,
by substituting R„ for IV„and G~' for G' in these quantities leads to relative errors of the order of K/&u»
and R/~~ in the final result. With this approximation the nonvanishing matrix elements of the three
quantities become

(R„G R„)„=(R„GQ„),t t* = —(V„*V„/&u„)[(R„R-)/co„—(R, -R )/&u, ],
((yxe 0 IV,ff 1&0& 0 )) =((&AVl~agl e0e 0 )) *=V„[1+i(R„-R,)/u&„,],

((woe 0 ~C, icos 0"))=(s+2R,') '.
A A

The further evaluation of P&GP& is straightforward since all matrices to be inverted are now diago-
nal. Trivial algebra leads to a lengthy expression for co(a, b;s) inwhich most of the terms are of high-
er order in K/~E and R/&uz with respect to some leading terms which alone will be retained. Follow-
ing Eq. (7), the redistribtuion function becomes (for b oa)

R"
0

(10)

where (with c =a or b)

L(v„)=—[(K,"+ R,") /n'][(v, oyK, »+R, ')2+(K,"+R,")2] '

is the absorption profile, and

y~~ = (K~"Kp" + K(,~)"Ro")/(K~ +R~"). (12)

This latter quantity provides an interpretation
of the factor yz(A) found on experimental grounds
in Refs. 6 and 7.

For case (2) the redistribution function takes
again the form of Eq. (10); however, in this case
we have

y, ~
=K "K~"(Ko" +R0")/K~" (Kq" +R~"), (13)

where K,' (c =a, b) is the collisional width function
of the absorption profile in case (2) [quite analo-
gous to K," and also easily obtainable from (5)].
In both cases, Eq. (10) generalizes the results of
the impact theory" for which one has / Q

Kp"

(viz. , K,"). If at least one of the two frequency
separations w„or &&, is inside the impact do-
main, expressions (12) and (13) coincide in their
functional dependence on K," (or K,"). For far-
wing excitation and near-resonance detection, "
e.g. , we have y,~=K"((u„) [or K"(e„)]. It is inter-
esting to notice that for far-wing excitation and
detection near the incident frequency, the pres-
ence of K"(~„)in y„ for case (1) may entail a
flat maximum superposed on the Rayleigh peak
[term with &(&u„) in Eq. (10)] in a similar manner
as that occurring in the ac Stark effect in a strong
radiation field. This maximum is due to colli-
sional transitions of the atomic state bebveen the
virtual levels ~, and &,.

In conclusion we emphasize that in both cases
(1) and (2) the redistribution function involves
only the frequency-dependent width functions

!K'(b, &u) [or K (b, &u)] and R'(4&v) of the absorption
profile (ll). Resu1ts obtained from light scatter-
ing are therefore related in a simple manner to
those obtained in emission or absorption spec-
troscopy. It might be of interest to check this
relation experimentally.

We are grateful to Dr. J. Cooper, Dr. G. Nien-
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sions.
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