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Discrepancies from Asymptotic Series and Their Relation to Complex Classical Trajectories
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There exist functions F{x)whose asymptotic expansions, when computed at fixed x and
optimal order, seem to converge to a numerical value which deviatea significantly from
F(x) itself Seve. ral examples are given, showing that this phenomenon is not exceptional,
and should occur in quantum theory. In particular, the semiclassical expansion, at large
quantum numbers, of levels of the quartic oscillator V=x4 presents such discrepancies,
which we explain quantitatively as contributions from classical trajectories for which
space and time coordinates become complex.

When asymptotic expansions are used for prac-
tical purposes, the following procedure is cur-
rently followed: The sequence F~' (x) of partial
sums for the function E(x) (x- ~) is constructed
for a large but fixed value of the variable x. The
best estimate F*(x) is allegedly attained by stop-
ping at the rank k =K such the Kth term of the
series is smallest. The value r of this last term
is assumed to provide an order of magnitude for
the actual error F(x) -E*(x). Such a procedure
does not rely on the mathematical definition of
the asymptotic expansion (h fixed, x- ~), but
rather on a fa,ith supported by experience. If in
some cases [such as the Stirling expansion of F(x)
for x real] it may be proven that ~E(X) -E*(x)~ & e,
nothing prevents in general the sequence F"~(x)
from exhibiting an extremely flat plateau of width
e around E*(x), while the exact value F(x) lies
elsewhere, at a distance from the plateau m&c@
large~ than e. The "best" estimate provided by

the asymptotic expansion will then be quite unre-
liable.

As a first example, consider the asymptotic
expansion of the Bessel function,

n( 2'�) &/2 Z (z ) e
- &(& - & /4 )

g(g P/4) P [r(h+ 2}] (l), , (2iz)"h! '

valid for z real and large. When 0 &argz & ~n,
for ~z ~-~, the second part of this expansion de-
creases exponentially; from a mathematical point
of view, it is negligible when compared with all
terms of the first series, and should be dropped.
For numerical purposes, however, it is quite
significant, even if y, the imaginary part of z =x
+i y, is large. For instance (see Fig. l), the
successive approximations for J,(5+3i) provided
by the first part of the expansion (1) suggest that
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3.2490 I"(x) = $ e '*'p(s) ds. (3)
20 Since Re@(u) ~ 0 along the integration path of (2),

the integration contour of (3) lies on the Riemann
surface of p(s) in the half-plane Ims ~ 0, except
that it makes a loop about the branch point s = 0
which corresponds to the dominant saddle point
u= 0. By making the expansion

3.2485
-0.8209

p(s) = P p„g, s" ',
n= 1

we find that the coefficients of the expansion of
I'(x) are

o--. k 1+3. 1 fbi

FIG. 1. Convergence in the complex plane of the
asymptotic expansion of Jp(5+3').

Thus, the behavior of I'~ for 0 large is governed
by the radius of convergence l s, l of the series

P o dd (s) Z Py -gg s

the best estimate J,* =-0.82097+3.24987i (K
= 12d: 3) approaches J, within an error e = 10 ';
however, a much larger discrepancy between J0*
and J0 exists, which is well accounted for by the
exponentially small term 5 =(2') ~'e'&'
= —(5.7+5.9i) && 10 '. For general z, the small-
est term (of rank K-

l 2z l) yields for the best
estimate an apparent uncertainty ~ of magnitude

However, the exponentially small correc-
tion 5 in (1) has magnitude e ", which is much

larger than e as long as largz l
& 2n, and should

be retained (except along the Stokes line' Rez = 0).
Qf course, this correction 5 would be absent for
Hankel functions.

Such results extend to asymptotic expansions
generated by the method of steepest descent. Con-
sider an integral along a complex path,

E(x) = Je "&"& du, (2)

This expansion is constructed by taking i@(u) = s
as the integration variable, which transforms (2)

where y(u) is analytic, and assume for simplicity
that one saddle point at u= 0, with cp(0) = 0 and

y"(0) g0, dominates in the limit x -+~. Subdomi-
nant saddles, at a lower altitude, may be crossed
by the path, and give exponentially small contribu-
tions, which we intend to compare with the "error"
e, estimated naively as the smallest term of the
asymptotic exp@.nsion

Here s, is the singularity of p(s) closest to the
origin and lying on either of the two sheets asso-
ciated with the branch point s =0. By standard
techniques' we then find that for x large and fixed,
the smallest term of the asymptotic series, of
ranks xls&l, has si« ~ exp( —xls~l)- » t"e
other hand, in order to exhibit the contribution
to F(x) of subdominant saddles, if any, one should
push the integration contour of (3) upwards, as
far as is allowed by the singularities of p(s).
Then the lowest singularity sz encountered by the
contour besides s =0 yields a contribution 6 to
I (x) proportional to exp(ixsd) in the limit of large

This contribution, although exponentially
small since Imsz &0, is nonetheless relevant if it
dominates e. Two generic situations occur:

(i) l s, l
&Ims ~.—The contributions from sub-

dominant saddles, if any, are negligible, and the
asymptotic expansion is reliable within an error
of order e. Examples include the function rtx)
and the Hankel functions (s ~

= i~), and more gen-
erally any function equal to the Borel sum of its
asymptotic expansion.

(ii) ls, l &Ims&.—A systematic deviation is then
introduced by the asymptotic expansion, which
should be corrected by including the contribution
from the subdominant saddle. Such a contribu-
tion is relevant even in the limit x —~, since

l 5/el —~. An example is the integral (2) taken
on the real axis with y(u) = 36u' —20u'+3u': The
subdominant saddle point is u=3 (s~ = 27i), where-
as the saddle point u= 2 (s, = 32i) controls the
behavior of the asymptotic expansion. Another
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example is the Bessel function J,(z) (Rez )0)
seen above, for which s, = s z but 5» c.

The semiclassical expansions of quantum mech-
anics (and the perturbation expansions of field
theory) present some analogy with asymptotic ex-
pansions generated by a path integral, since
Feynman integrals from which they may be de-
rived look like (2): x is replaced by 1/5 (or by
the inverse coupling constant), the integration
variable u by the trajectories in configuration
space, and iy(u) by the action along such a tra-
jectory. For analytic potentials, the function
p(s) which arises as in (3) when taking the action
as a variable is expected to be analytic. When
the integration contour on s (real axis) is pushed
upwards, a dominant contribution arises from
each singularity of p(s) on the real axis, i.e. ,
from each classical trajectory which makes the
action stationary; the semiclassical expansion
results by expanding p(s) around these real singu-
larities. However, subdominant contributions 5
are expected to arise, as above, from singulari-
ties sz of p(s) in the upper half-plane, i.e., from
comp/sx classical trajectories, ' solutions of the
classical equations of motion for complex space
and time variables (or for complex field vari-

ables). Here again, 6 may dominate the smallest
terms of the asymptotic expansion in powers of S.
It is then pertinent, while using a semiclassical
expansion (or a perturbation expansion in field
theory), to take into account the complex trajec-
tories whose actions have small imaginary parts.

Let us illustrate this qualitative idea by study-
ing the energy levels E„of the quartic oscillator
H =p2+x~ (setting K= 2m = 1). Numerical calcu-
lations4 exhibit a good "convergence" for the
semiclassical estimates E„' of E„ in inverse
powers of the quantum number n, which are ob-
tained by solving equations of the form

(n + —,') m = o+ P b, o "",
J =1

.@I/4o-=J (E-x')' 'dx

F3/ [Q i) ]2/[3(271) &/2]

(4)

The first eight terms of the series (4) have been
given by Bender, Olaussen, and Wang' (b, = —~»&,

k, = 11[I'(-,') ]'~'/165 888, .. .), By their method,
we have obtained b,. up to j= 16 in closed form,
and up to j= 53 numerically. Large-order terms
fit well with the following asymptotic expression
of 5

Q'y G62i-i)2 "''w 'sin( jw ——,'w) i+2j 2 (2i 2)(2j 3) )
where a, is given in terms of the b„(2k (I+2) by

(6)

1+ P o. , o '—= exp(2b, o '+4b, o ' —8b, cr ' —16b,v '+ ~ ~ ~ )
g=l

(6')

(o., = —v/6, n, =~'/72, . ..). Equations (6) and
(6') have been derived through a semiclassical
analysis of the Borel transform' of the series
(4}.

The quantization rule (4) relies on real closed
trajectories, bouncing between the real turning
points x=+E~4, and on small fluctuations around
them. But this semiclassical expansion is again
plagued by a systematic discrepancy (Table I),
which we explain by the existence of complex
closed trajectories, making loops on the Riemann
surface (Fig. 2) of the complex action S(z) = fo(E
-x')+' dx, around any of the four turning points
satisfying x4 =E. The corresponding values of the
action s=po+iqo (p+q even) are the singularities
of the function p(s) of (3). According to the above
analysis, the "convergence" of semiclassical ex-
pansions is governed by the complex singularities
s, lying closest to the dominant ones 8, = 2Po, i.e.,
s, = (2p + 1)o+ io, with ) s, —s, ~

= ov 2 [these singu-

n=3 n=6

g (0)

g (&)

g (3)

~ (8)

~ (t)

g (9)

g (11)

g„*+5

&n

0.87
0.98
0.79
1.40

0.15
1.07
1.060

11.611525 3
11.644 989 5
11.644 765 8
11.644 768 2
11.644 767 9
11.644 768 1
11.644 767 9

—0.000 023 6
11.644 744 4
11.644 745 51

26.506 335 510 963
26,528 512 551757
26.528 471 147 158
26.528 471 181652
26.528 471 181390
26.528471 181401
26. 528 471 181399
0.000 000 002 343

26.528 471 183 742
26.528 471 183 682

'Values from which the "best' estimate E„* (for a
given quantum number n) is made.

TABLE I. Semiclassical estimates for a sample of
energy levels of the quartic oscillator. The "best" esti-
mates E„*differ significantly from the exact values
E„. Deviations are explained by the contribution 6 from
complex classical trajectories [Eq. (8)].
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FIG. 2. The plane of complex coordinates x for the
potential V~x4. The asymptotic expression of the wave
function is discontinuous along the Stokes lines (heavy
solid lines), issuing from the two real and the two
imaginary turning points. The dashed line shows a
complex classical trajectory tunneling from a real to
RD, imaginary turning point,

larities are precisely responsible for the asymp-
totic expansion (6)]. Accordingly, the apparent
accuracy of semiclassical expansions is e

~exp( —ov 2/jt). However, the complex trajector-
ies associated with the lowest-lying singularities
s z

——(2p+ 1)o+i@also yield subdominant contribu-
tions, proportional to 5 cc exp f —o/Rj. We are thus
in case (ii): Complex trajectories contribute
significantly even in the semiclassical limit.

More precisely, let us calculate the resulting
correction 6 for the nth energy level E„, to lowest
order: We shall systematically retain terms in
e '~", but drop power terms in 5/o. In each of
the regions n =1, 2, . . . , 8 of the complex x plane
limited by the Stokes lines (Fig. 2), the eigenfunc-
tion is then represented by an approximation (E
—x') + [A e'saln+B e-'us/~] The WKB matching
procedure connects the values of the constants
A and B from one region to the other, in particu-
lar around the turning points + iZ+', for which'

A, =A, (1+e ")+'—iB,e 'and B,=iA, e '+B,(l
+ e ")~' (we have reset 5= 1). The boundary con-
ditions A., =B4=A, =B,=0 provide the quantization
rule, which comes out as (1+e ' )+'coso+e
=0, or equivalently as

(n+ 2)s = o —(- 1)"arctane

Together with (5), this equation yields the sub-
dominant contribution 6 to the energy levels E„.
To lowest order in e ' and I/o,

6 =(- 1)"3E„exp[- (n+ 2)w]/(n+ —,')m
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explains indeed most of the discrepancy between
the best estimate E„*and the exact value E„(Ta-
ble I).

If we now consider the potential V =x4+ ax, and
let a increase, the topology of the Stokes lines
changes: When a = g, =1.18E+', the two complex
turning points enter regions 5 and 6 of Fig. 2 and
become inactive'; the subdominant correction 5
disappears for a & a,

Thus, subdominant contributions from complex
solutions of the classical equations of motion
may provide corrections which, although small
as exp{-Ims s/8], are numerically relevant.
Since the idea of considering complex classical
trajectories for evaluating quantum effects is
popular in the theory of heavy-ion nuclear colli-
sions, "' the above remarks may help us to under-
stand the practical success of such methods. In
quantum field theory, solutions of the complex
classical field equations, namely instantons, '
are also currently used, both in the study of the
tunneling effect and to get nonperturbative infor-
mation from the large orders of perturbation se-
ries. The present analysis suggests using them
further to add subdominant corrections to the per-
turbation expansions.
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