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Deviations from the classical phenomenological theory of tricriticality are analyzed
on the basis of the exact solution (in four field variables) of the spherical-model limit
(n ) in three dimensions. The scaling functions are nonuniversal but are parame-
trized by a single variable, , which vanishes for infinite-range interactions. Special re-
lations between critical amplitude ratios correlate well with observations on antiferro-
magnets and 3He- He mixtures. Novel qualitative predictions are made for the three-
phase monohedron below T& .

The universality of critical-point behavior is
now a well-established concept: Not only should
critical exponents be the same for all systems
in a given class (defined by dimensionality, or-
der-parameter symmetry, etc.), but dimension-
less critical-amplitude ratios and the full scaling
functions should also be invariant within a class.
For ordinary critical points, universality is well
checked by both experimental and theoretical
studies. For tricritical points, however, the sit-
uation is less clear. Renormalization-group
arguments' indicate that for three-dimensional
systems (to which we restrict our considerations),
the tricritical exponents should be classical (n
= —1, P = 2, b, = T, 6, = T),' although logarithmic
factors in t = (T —T,)/T, are anticipated for sys-
tems with order parameters of finitely many
components (n & ~).'" The former conclusion is
consistent with the best modern experiments al-
though no logarithmic factors have yet been de-
tected. But, even though observed tricritical ex-
ponents are classical, the behavior of real sys-
tems deviates in marked qualitative ways from
other predictions of the classical phenomenologi-
cal theories; see, e.g. , Fig. 1. What is the sig-
nificance of these deviations'P How are the vari-
ous deviations correlated with one another~

Here we report an initial attack on these ques-
tions, based on the recently achieved exact solu-
tion for tricritical behavior in the spherical-mod-
el or infinite-component limit (n- ~)."' ln this
limit the exponents are classical but the observed
deviations (and others yet to be seen) do, indeed,
occur. However, despite earlier expectations,
they are not universal in magnitude) Neverthe-
less, the asymptotic nonuniversality is complete-
ly parametrized by a single variable, z~ (a/R, )',
where R, measures the range of interactions
relative to a microscopic length a.

The full description of tricritical behavior re-
quires, in addition to the temperature T= T,(1+t),
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FIG. 1. (a) Tricritical phase diagram in the (m2, T)
plane. According to classical theory, the phase boun-
dary Ot has the same slope as the & line tL, . {b) Iso-
therms in the (m»h2) plane. Classically, the tricriti-
cal isotherm for h2&h2 g has a finite slope at h2=h2, g

and no singlllarlty.

three fields h, ( j=1,2, 3) and their conjugate den-
sities m, . In a model with spin variables s, one
may take m, =-(s'). More concretely, m, -=m,

the primary order parameter, corresponds to
the staggered magnetization Mt in an antiferro-
magnet, or to the wave-function operator P in
helium three-four mixtures. The "even" density
-m, then corresponds, respectively, to M, the
ordinary magnetization, or to x4, the 'He mole
fraction; the conjugate field h, is the magnetic
field II or chemical potential difference 6= p, 3
—p4. The additional "odd" density m3 fluctuates
independently of m and m, in the tricritical re-
.gion but is harder to identify microscopically ex-
cept in the case of ordinary fluid mixtures. Here
all three m,. correspond, asymptotically, to in-
dependent linear combinations of the three or
more mole fractions x, (or densities p„)"; the
k,. are appropriate linear combinations of the
chemical potentials p.~.
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where P lies on the linear extension of the A. line
as in Fig. 1(a). According to classical theory all
these ratios vanish identically& This trivial uni-
versality does not extend to the n -~ limit t In-
stead, iri terms of the range parameter z, we
find"

Q, (z) = Q, (z) = z(1 —z )
' 2 =—tan 0(z), (5)

g,(z) = g,(z) =z(1-z') -"tan[-,'(e+ -,'~) ].
For small z one has tan[3(9+ 2w)]=3 '++9z.
(Note that for z ) I the tricritical point is replaced
by a critical end point. )

The results (5) and (6) imply that one may pre-
dict all the ratios g; given any one of them! In
deed, from Giordano and Wolf's data' for the
metamagnet dysprosium aluminum garnet (DyAlG)
with H II I110], one finds 0,= 0.145(10), which via
(6) corresponds to z = 0.210(12) (all uncertainties
referring to the last decimal place). Through (5)
this predicts g, '"'"=0.215(13) which compares
well with the observed value g, =0.24(3). Like-
wise the fitted value, '" g, =0.125(25), satisfies
the equality (6) within the precision available.
Current data for H II [111]in DyAlG and for other
antiferromagnets do not allow us comparable
tests. However, optical measurements' on FeCl,

(6)

Now Fig. 1(a) depicts a prototypical tricritical
phase diagram in the symmetry plane h =53=0;
to within experimental resolution the phase bound-'

aries, Ot, Qt, and I.t, are asymptotically linear.
On the other hand, the tricritical isotherm, in
Fig. 1(b), verifies I m, —m, , I

~
I h, —h, , I

'i' as
h2-h q, or

(sm, /sh, ),=a, /Ih, -h, , I't2, for T= T„(1)
where ( and & refer to the ordered and disor-
dered, regions respectively. Likewise, the tri-
critical "isochamp" may be described by

(sm, /sh, ),=C, /I t I"for h, =h, , (2)

Similarly, at the phase boundary h, =h, ,(T) be-
low T, , the slopes of OO' and QQ' in Fig. 1(b)
obey

(Bm,/sh, ) =Gp/It I for h, =h, „T(T,. (3)

All the exponents appearing here are those ex-
pected classically; we defer until the end the
question of the logarithmic factors predicted by
renormalization-group analysis.

We may now define the dimensionless ratios

g, = oplpq, z, = a,/a„
(4}

m, =m, m, =m, —m, ,(T),

in which b is a suitably chosen mixing parame-
ter, '"' m, , (T) describes the locus Pt in Fig. 1(a),
and the A,. are the critical amplitudes for E+'
=E+(z = 0). Classical theory" then gives the
edge of the monohedron as u, =so,', se3 Log', this
is reflected in the parabolic and near-cubic as-
pects of the projections illustrated in Figs. 3
and 2. Nonclassical deviations can be observed
quantitatively in the ratios

e, , = [o,o],/[z, o], ,

6I, , = [c,o],. /[z, o], ,
(8)

where [ ] denotes the projection on the w, axis.
From a complete ca.lculation'' to O(z) of the

yield g, =-0.24(4), corresponding to z =0.31(4);
the significant departures from the DyAIG values
demonstrate the nonuniver sality.

From the thermodynamic and ultrasonic data of
Ahlers and Greywall" and Meyer and collabora-
tors" on helium three-four mixtures at vapor
pressure, we may similarly estimate g, =0.086
(15}, &,=0.115(15), Z, =0.125(15), and & =0.09
(3). Within the uncertainties g, and g, are equal,
in accord with (5), and suggest z =0.120(15). The
relation (6) then yields Q, '""'=g, '"'"=0.076(11).
This is quite consistent with the estimates quoted.

' Furthermore, measurements by Watts and Webb, "
who paid special attention to gravitational effects,
yield g, = 0.075(15), while light-scattering stud-
ies by Leiderer, Watts, and Webb" give g,
= 0.070(15), both in excellent agreement with the
prediction! Data at high pressures might well
reveal nonuniversality, and would, in any case,
be valuable as a further check on the ratio rela-
tions.

Our analysis so far has been confined to strict-
ly vanishing h, and 03. For superfluids no more
is observable, but the susceptibility y= em/Bh,
is measurable in neutron-scattering experiments
on antiferromagnets (at least for h, -0) and
hence some related nonuniversal amplitude ratios
could be studied. In fluid mixtures, however,
nonzero h, and A, 3 play a vital role. ' The most
dramatic phenomenon is the three-phase monohe-
dron observed" in density space (m, m„m, ) at
fixed T&g, ; see Fig. 2.

The shape of the monohedron is conveniently
expressed using the scaling variables w, =m, /
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FIG. 2. General view of the three-phase monohedron
in composition or density space. The vertices of each
triangle of dashed lines represent the compositions of
coexisting phases: C+ and C are critical end points
conjugate to E and E+, respectively; Q is the midpoint
pf C,C and 0 is the symmetry point or node (see Fig.
1); the m; label the scalirg axes.

Wi

FIG. 3. View of the three-phase monohedron (solid
curve) alorg the M, ~ %3 axis plotted to first inz. The
dotted parabola, E 0 C PC+ 0+.E+, represents the
classical limit (z =0).

shape of the monohedron (for n —~), we find

e,„=(-'.) '~' [ I - e, ,z],
g, , =(—,')'[1 —e, ;z],

(9)

with eo, =65/243&3 =0.154 =194/729P3 =e, , and,
in addition, e, , =e„,=0.02, e, , =e, , =0.17.
Experimentally the ratios $0, and (R, , are the
most accessible since, as T —T„ they become
equal to the ratios 0+0 /E~ and C+C /E~
of unnormalized composition differences; in par-
ticular, it is unnecessary to determine the scal-
ing axes. If, as for magnets, z =0.1 to 0.3, the
predicted nonclassical deviations should be de-
tectable by accurate measurements on multicom-
ponent fluids even though current data" are not

sufficiently precise.
In classical theory all the coexistence triangles

become parallel asymptotically. This parallel:-
ism fails for z &0 (and n = ~) but the maximum
residual angle, between E,C and ~0+0 0, ap-
pears likely to be less than 1'. Other nonclassi-
cal features visible in Fig. 3, are the kinks in
the edge of the monohedron at 0+ and 0 . These
derive directly from the "soft, "Goldstone modes
which appear in the ordered phase on, but only
on, the symmetry plane (h=h, =0). We thus spec-
ulate that such kinks will be present for=all n ~ 2.
In normal fluids, however, n=1 is appropriate
and, although the edge might bend more or less
sharply relative to classical theory, no kinks
should occur at 0,. Conversely, in real multi-
component fluids, a marked flattening of the edge
is observed" near the critical end points, C,.
This is believed to reflect the nonclassical wing
critical exponent I/P(n=1) =3.2, but, since 1/

P(n= ~) =2, the effect is, unfortunately, absent
from our calculations. '

Finally we ask why, in the light of the predicted
logarithmic factors in jt (, (h(, etc. ,' our cal-
culations for n= ~ should apply at all for n&~.
A definitive answer must surely await detailed
calculations for n & ~. Nevertheless, noting that
z corresponds to a marginal variable (which is
irrelevant but dangerous' for d &3), we speculate
that a full analysis for finite n might, to a good
approximation, replace z by an expression like
z = (z, +z,[ln

~
t

~ /q)] ') with q and z functions of
the scaled variables h j~ t ~, etc. , and z,(n) -0
as n -~. If q or zo/z, were large, z would be
very slowly varying in practical tricritical ex-
periments, so that observations would correlate
well with a z = const approximation.
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Azimuthal anisotropies in the photoemission from the Te 4d and Na 2p core levels have
been measured for these atoms adsorbed in the c(2?&2) configuration on Ni(001). The ob-
served variations with photoelectron kinetic energy, polar angle of emission, and adsor-
bate species indicate that this is a very promising technique for surface-structure deter-
mination. Preliminary multiple-scattering calculations show encouraging agreement
with experiments.

The availability of synchrotron radiation in the
photon energy range S~ &30 eV has led to propos-
als by Liebsch' and others'" that measurements
of the anisotropy of photoemission from the core
levels of adsorbed atoms could be used to deter-
mine their positions relative to the surface. The
wave function of the excited photoelectron is en-
visaged as a wave emanating from the atom of
origin. This wave will scatter against substrate
atoms, and the resulting electron interference
pattern should be observable with an external de-
tector. The theoretical prospects for a tech-
nique based on this effect appear quite good."'
In contrast, the experimental situation has been
less hopeful. Observations at low energy (h~
=24 eV) of the emission from the 5P levels of Cs
adsorbed on W(001) showed only weak anisotro-
pies. s More recently, x-ray (S&u =1487 eV) photo-

emission measurements of the 1s level of 0 ad-
sorbed on Cu(001) showed somewhat larger
anisotropies, ' but such high-energy work appears
to be restricted to grazing angles of emissio~~.
presumably because of Debye-%aller effects ~.nd
the weakness of all but forward scattering. '

Ideally, in such experiments, one would wish
to tune S~ so that the photoelectrons emerge
with kinetic energies, E, in the range 30-200
eV appropriate to the conventional structural
technique of low-energy electron diffraction
(LEED). Synchrotron radiation is therefore es-
sential. This would allow the extensive theoreti-
cal expertise accumulated in LEED studies to be
transferred to the photoemission problem. It
would also ensure strong backscattering ampli-
tudes with only limited Debye-%aller degrada-
tion at room temperature. ' Moreover, as in
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