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Ne have computed a new contribution to the ground-state hyperfine splitting in muonium:—2(u/~)2{m/M)[ln(M/m)P Ez ———6.6 kHz. Uncalculated theoretical contributions are ex-
pected to be no larger than a few kHz. The new theoretical estimate, &th~0, =4463 297.9(7.0)
kHz is in good agreement with experiment: ve», =4 463 302.35(0.52) kHz. The bulk of the
uncertainty in the theory is due to uncertainty in the measured value of p &/p&.

High-precision measurements of the ground-
state hyperfine splitting (hfs) in muonium (p.'e )
allow a detailed test of our understanding of two-
body bound states in quantum field theory and par-
ticularly in quantum electrodynamics. The cur-
rent experimental value is'

v „,=4463 302.35(0.52) kHz.

Until recently, theoretical predictions were
known only to within j0-15 kHz. ' The bulk of
this uncertainty comes from three sources:
(1) Uncalculated terms of O((n'm/M)[ln(M/m)]Ez
-6 kHz) coming from two-loop ladder and cross-
ladder diagrams (E~ —', n m'/M is the lowest-
order hfs); (2) uncalculated terms of O((n/n)'(m/
M)[ln(M/m))'Ez- 3 kHz); (3) uncertainty in the
measured value of tL„/~ leading to possible er-
rors of+ 5 kHz. '

In a new paper, Bodwin, Yennie, and Gregorio
have demonstrated that terms of the first sort
cancel completely. ' In this Letter, we describe
a calculation of all terms of the second type 'he
largest remaining contributions to the muonium
hfs. These arise from radiative corrections to
the electron and photon lines in the one-loop lad-
der diagrams. We find a total contribution of

ln —E~ = —6.6 kHz.

Consequently the current theoretical prediction is
vt&«, =4 463 297.9(7.0) kHz.

The agreement with experiment is excellent.
The major source of error is now in p.„/p, and
improved values for this constant wiQ be avail-
able in the near future. There remains a theo-

retical uncertainty of a few kHz due to uncalcu-
lated terms of the form'

(n/w)'(m/M)[in(M/m )]E„-0.6 kHz,

(n'm/M)EF 1.1 k-Hz, (n'/m)E~ 0.6 k-Hz.

In what follows, we first review the calculation
of the 0((nm/M) [ln(M jm)]E|,) terms in the hfs. '
Building upon this analysis, we than compute all
O((n'm/M) [ln(M/m )]'E~) contributions . .Finally
'w'e present a very simple argument supporting
the conclusions of Bodwin, Yennie, and Gregor-
10,

The terms of O((nm/M) [ln(M jm)]Ez) come
from one-loop ladder graphs (Fig. 1). Factors
of ln(M/m) can only arise fron. the integration
region m « Ih I «M, because only in this region
are the integrals sensitive to both mass scales
m and M. Thus we can restrict the integration
so that Ikl) m. This is useful for three reasons:
(1) It prevents double counting of lower-order
(in n) contributions coming from the nonrelativis-
tic region. (2) The relative momenta in the wave
functions (i.e. , p, q), being nonrelativistic
(- nm), can be neglected in the kernel, and the
integration over wave functions may be trivally
performed:

I Jd'p ~(p)l'= I~(x=0) I'= n'm'j~. (2)

(3) The effects due to binding are negligible
(O(n ) corrections) and the external legs can be
put on mass she11. Consequently the contribution
from this region of momentum space in the ker-
nels of Fig. I is gauge invariant. ' Thus the
0( (nm/M) In(M/m)E~) hfs due to the uncrossed
ladder [ Fig. 1(a)] is (in Feynman gauge)

»» "[y' ~.y "&y'2(1+ yo))»'"'[y'ra .[ &+M(r'+1) ) y.--( 2'.+))
3 (2n)4 h6 y2 2~F0
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where we have projected out the hyperfine interaction (spin-spin) using

(3)

ie d k k'+3k'
(2~)' k' k'-2Mk'

Performing a Wick rotation (ko=ik cosy, ski= 0 sing) and symmetrizing in ko, we finally obtain

n m 2 "dk~ i + cL
= ——E~ — — d y sin' y[ 3 + 2 tan' y] 8( i

k c os y i

—m)
m

3 Tr[ ) ' ),sit ' 2( I + ),)] Tr [ ) ' ),m "'
2( I + ) .)]

is really demonstrated that the cross-ladder graph [ Fig. I(b)] gives an identical contribution, and
therefore the sum of the two is

-&dk +.m—= —3 ——ln —E
k ~m m

(4)

where only logarithmic terms have been retained.
Terms of O((n'm/M)[ln(M/m)]'Ez) are due to first-order radiative corrections on the electron and

photon lines of the graphs just discussed (Fig. 2). When

ski�»m

(and Euclidean), these radiative cor-
rections modify the bare graphs only by an overall factor of the form

(&a/m)ln(k'/m'), k'» m'.

Introducing such a factor into the integrand of (4) results in a splitting of

~= -3K — —ln —F.z+ 0 — —ln —g z

As is well known, the constants K for the vacuum-polarization, electron propagation and vertex cor-
rections [Figs. 2(a), 2(b), and 2(c)] are &, 4, and -~, respectively. ' Furthermore, it is readily de-
monstrated that R'=-4 for the radiative correction in Fig. 2(d):

-ie' d 4q 1
ye- ye (2,)- 6 (o»~4~2 g, g

&i&r"u(0)

2-se
(2v)'

—„u(0)g, —., ),u(0) =—ln, TB„„, k'»m'.

Thus the leading contribution from the kernels in
Fig. 2 is just that quoted above [ Eq. (I)]:

~=-3[2(l)+-', +2(——,')+-,'I
(
—
) (

—
) ln(—) Z~.

These diagrams are the only source of O(o, '
x [In(M/m) ]'E~) splittings. Momenta in first-
order radiative corrections to the muon line are
scaled by M and thus cannot contribute [ln(M/
m}]' terms. Second-order radiative corrections
to the one-photon-exchange interaction result in

no [In(M/m)]'. The only remaining graphs are
the two-loop ladder and cross-ladder graphs con-
sidered in Ref. 3. Two of these are illustrated in
Fig. 3. Separately these graphs contain terms of

m+p

(o) (b)
FIG. l. Kernels contributing to O(u (m/M) In(M/m)@z)

hfs.

(c) (d)

FIG. 2. Kernels contributing to O(o.2 (m/M) [In(M/m) )2

x Q~) hfs

1093



VOLUME 41, NUMBER 16 PHYSICAL REVIEW LETTERS 16 Oc:TQBER 1978

-q -k

(a) (b)

FIG. 3. Two graphs which cance1 to O(n2(m/M)
x In(M/m)Ez).

O((n'er/M)[ ln(M /m)]E~) . However, one can
demonstrate that the graphs cancel in pairs to
this order [of course, O((n'm/M)E~) terms may
remain] if the following intuitively reasonable as-
sumptions are valid: The external momenta can
be set to zero since logarithmic contributions
come only from the region of relativistic momen-
ta (as above); and the electron mass can be ne-
glected because logarithmic contributions arise
only from the region of momenta m «h, q «M (in
both loops).

Bodwin et al. have verified these by direct com-
putation. The logarithmic contribution of any
diagram is then canceled by that from the dia-
gram obtained by reversing the electron line
while leaving all other propagators unchanged
(e.g. , Fig. 3). This is because the traces [as in
Etl. (3)) associated with the electron lines in each
diagram are equal but opposite in sign. For ex-
ample, the electron traces for the diagrams in
Figs. 3(a) and 3(b) are, respectively [the r, in
—,'(1+r,) of Et(. (3) obviously does not contribute
here],

1 1 1
F570(

(e)

-1 -1 1r r re 5~ re y rn2

1 1 1=-»" r'r, r rs re2——

Thus the logarithmic contribution [ and indeed all
contributions of O(n'E~) from the region m«h, q
«M] due to all two-loop ladder graphs cancel
completely.

Needless to say, many of the approximations
used in this paper are valid only when computing
leading logarithmic terms. Nonleading terms
must be analyzed within the context of an exact
bound-state perturbation theory (see, for exam-
ple, Refs. 2 and 4). However, it appears likely
that the uncertainty due to our ignorance of these
terms will for the present be no larger than ex-
perimental uncertainties in the relevant physical
constants (i.e. , p„/p~, n).

The immediate stimulus for this work was the
analysis by Bodwin, Yennie, and Gregorio de-
scribed in Ref. 3. We are indebted to them for
several conversations. %e also thank V. Hughes
and R. Horgan for fruitful discussions. This
work was supported by the U. S. Department of
Energy.
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