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astrophysical collapse., However, it is reasonable

to assume that the qualitative picture will be the
same, It is unlikely that any significant amount
of gravitational wave energy will be emitted dur-
ing the infall phase of any collapse. One should
expect generation of gravitational waves during
a bounce, e.g., in the formation of a neutron
star,

From this point of view one may expect more
gravitational radiation during neutron-star for-
mation than during black-hole formation. Of
course, we cannot rule out generation of gravita-
tional waves during black-hole formation via
mechanisms which have no analog in the cylin-
drical case. It is possible that a deformed hori-
zon arises in a highly asymmetric collapse and
emits gravitational waves resembling the per-
turbation modes of a Kerr black hole.!” Smarr
and Eppley'® studied the coalescense of two black
holes and found that the deformed horizon which
is formed in that case is not an efficient source
of gravitational radiation., Another possible
mechanism for enhanced radiation is growth of
unstable nonaxisymmetric perturbations leading
to breakdown of the collapsing object to two or-
biting parts or to a rotating barlike configura-
tion,'® The results of this study fully support the
picture!! that these modes are the most promis-
ing, and probably the only possible, source for
generating large amounts of gravitational radia-
tion during collapse to a black hole.
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We calculate contributions of order oze(me3/mu2) In(m,, /m,) to the muonium hyperfine
splitting and find that they cancel for each class of kernels with a given number of ex-
changed transverse photons. A simple explanation for this result is offered.

Measurement of the hyperfine splitting (hfs) in
the ground state of muonium currently provides
the most stringent test of relativistic two-body
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bound-state theory. The present experimental
value of the triplet-singlet energy difference is
4463302.35 £0.52 kHz,! and further improvement
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in this measurement is expected in the near fu-
ture. Unfortunately, the uncertainty in the theo-
retical prediction? (4463 3046 +10 kHz) is about
an order of magnitude larger. The +6-kHz com-
ponent is really an experimental uncertainty; it
reflects our lack of precise knowledge of the mu-
on mass (i.e., magnetic moment). The +10-kHz
uncertainty allows for contributions that are not
yet incorporated into the theoretical prediction.
It comes from the expectation that there is a
term of order o*(m, /m“)ln(m”/me) relative to
the leading hfs that is comparable in magnitude
to the term of relative order o*(m, /m,)Ina ™.
Here we report that this expected term actually
vanishes.

A variety of approaches based on the Bethe-
Salpeter equation have been applied to the calcu-
lation of higher-order corrections to the hfs.?3
The details of these approaches differ greatly,
and it is important to find a particularly economi-
cal procedure in order to calculate the more |

1
po—a2°ﬁ_ﬁz(m2-i€)

where Ei(p) =(§2%+ miZ)lIZ’ A+(i) = [E{’fH,'(ﬁ)]/in;
and H;=d ;- §+ B;m,. The left-hand side of Eq.
(1) is represented graphically by a solid line,
while the terms on the right-hand side are repre-
sented by a double line and a line with an X, re-
spectively. .

Keeping the first term on the right-hand side of
Eq. (1), one finds that the Salpeter equation® in
the Coulomb ladder approximation reduces to

A =B)V, Xg-

1
Xe=EE,B) = B,(D) @)
Since Eq. (2) is intractable, we replace it with an
approximate equation that has no hfs. The solu-
tions are expressible in terms of Dirac-Coulomb
wave functions plus 1/m, corrections. They are
represented graphically by external lines with the
muon line doubled. The “pure Coulomb” contribu-
tion to the hfs contained in Eq. (2) is easily re-
covered by the methods of Ref. 2. It is represent-
ed by graph C in Fig. 1. Additional contributions
to the hfs arise from (i) the second term of Eq.

(1) between Coulomb rungs; (ii) crossed Coulomb
lines in place of (i); (iii) exchanged transverse
photons; and (iv) radiative-correction—type con-
tributions—e.g., electran or muon self-energies
or vertices. Only the first three types are dis-
cussed here.

It is found that individual graphs can give spuri-

== 27id [po _Ez(p)]A+(2)(§) +

complicated correction under consideration here.
In the present work, we have developed approach-
es which greatly simplify the computation of
known results and make ‘“almost trivial” the
treatment of the terms of relative order o?(m,/
m ) In(m,/m,). Even these simplified proce-
dures are a bit too lengthy to present in a Letter.
Here we shall outline an approach involving the
Gross equation® and give the results ot a detailed
calculation based on that approach. Then we offer
intuitive justification for a procedure that yields
these results much more simply. It should be
emphasized that the Gross equation is used here
for definiteness. The same arguments can be
made for any basic equation and with any gauge
for the photons.

Our analysis is based on the Gross equation.
This equation was used by Lepage? in his treat-
ment of the hfs, but we organize the calculation
in a somewhat different manner. We begin by
writing the noncovariant muon (particle 2) propa-
gator (SyP) as follows:

1

PoB,B) i<’ D

out lower-order contributions in m,™'; therefore,
it is important to keep together graphs related by
permutations of connections to the muon leg, e.g.,
the pair CC in Fig. 1. By adding related contribu-
tions before integration, we find that important
cancellations occur which result in simpler inte-
grals.

The two types of logarithms [lna ™! and In(m,/
m,)] are associated with two different momentum
ranges. (We assume that m, > m, and do not at-
tempt to work accurately enough so that we may
later let m, —m,.) The lna™ comes from the low-
momentum range am, Sp < m,, while the In(m,/
m,) comes from the intermediate range m, <p
S my,.

The contributions of relative order a?*(m,/
m,)[1na ! or In(m,/m,)] from each set are shown
in Table I. We note the following features of this
table: (i) The lno ™! terms arise entirely from a
subset of graphs which do not have external Cou-
lomb corrections (with respect to particle 1)
beyond those already accounted for in the wave
function. (ii) An enlarged set of graphs which in-
cludes a given lna ™! term plus related external
Coulomb corrections [e.g., C+CC+CCC or T
+2XCT +2(CC-T)+CTC +2XCCT] has a net
In(m,/m,) contribution of zero. [Note: this ap-
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FIG. 1. Graphs contributing to the hfs in relative
order a*(m,/m,) [Ina™! or In(m,/m,)). Double lines
indicate that the muon is on the positive-energy mass
shell, and x lines are the corresponding corrections.
“+.+++7” indicates five additional graphs in which the
order of photon emission on the muon leg is permuted.
Muon legs internal to a crossed photon structure repre-
sent complete muon propagators.

plies only to the given order of «; there are
terms of relative order a(m,/m,)In(m,/m,).]°
Thus, all contributions of relative order o *(m,/
m,) In(m, /m,) add up to zero.

It is possible to arrive at a simple explanation
of this result by grouping related sets of graphs
into an enlarged set. One starts by using (2) to
add explicit Coulomb factors to some of the origi-
nal sets so that all graphs in an enlarged set have
the same photon connections on the particle-1
leg. These enlarged sets, shown in Fig. 2, now
have combinations of three photons (Coulomb or
transverse). It turns out that one can obtain the
logarithmic content of these graphs by neglecting
the small components of the wave function and
setting external momenta equal to zero inside the
three-photon kernel. At this stage, one can com-
bine graphs so that all doubled lines and X lines
join up to give the complete muon propagator.
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TABLE I. Contributions of the graphs of Fig. 1 to
the piece of the hfs given by (8/3)a®(m,*/m?la Ina~!
+b In(m,, /m,)).

Graphical
set a b
C 1/4 1/4
CcC 0 -1/2
CCC 0 1/4
T -4 -4
2XCT 0 1
2X CC-T 0 1
2X CCT 0 2
CTC 0 0
TT 9/2 1
2XCTT 0 -1
TCT 5/4 0
TTT 0 0
Sum +2 0

(The same result can be obtained more directly
by using a perturbation approach that has only
complete propagators in the kernel.)

Now we consider the integrand of each of these
enlarged sets as a function of the energies (k,,
k,', k,"; subject to k,+k,’+k,"=0) of the ex-
changed photons. After removing lower-order
contributions (in m,™'), we find that the particle-
2 factor has the property of being even (odd) un-
der a simultaneous sign change of all the 2’s
for odd (even) number of exchanged transverse
photons. In the low-momentum region, the parti-
cle-1 integrand has both an even and an odd part,
so that the integral is nonvanishing. However, in
the intermediate momentum region we may ne-
glect m, in the particle-1 propagator, and it is

g
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FIG. 2. Rearrangement of the contributions of Fig. 1.
Here external momenta are set equal to zero within
the kernels. Each set consists of six graphs corre-
sponding to different orders of photon emission.
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found that the total integrand is odd. Hence the integration over the intermediate region yields no lo-

garithms.

The vanishing of the contribution from the intermediate region is most easily illustrated in the case
of the pure Coulomb correction [CCC]. The six graphs combine to give the muon factor

a,-k'd, k

=30 g { 5(k, )P (i-) — 8(k,"\P <ki>+ 6(k0+ko’)P<k71—> }

2 ]

(3a)

0

This is clearly an odd function of the k2,’s. The electron factor common to all graph is

&, K8, K

F:

where terms not contributing to the hperfine split-

ting have been dropped in Eq. (3). In the inter-
mediate range, where E - m, *m, -0 relative to
K and E’, the electron factor becomes an even
function of the k,’s, so that the total integrand is
odd.” Similar results are found for the other
graphs of Fig. 2, but the details are more com-
plicated. An even simpler argument leading to
this result was mentioned to us by Caswell.? He
studies the electron factor alone and shows from
its symmetry properties that the contributions of
different graphs cancel pairwise.

It should be mentioned that the behavior of the
contribution of relative order a(m, /m,)1n(m,/m,)
is different from that just described. This con-
tribution arises from two-photon graphs analo-
gous to the three-photon graphs in Fig. 2. Now,
however, the integrand is even in k&, in the inter-
mediate region yielding a nonvanishing result. In
the low-momentum region the integrand does not
have the proper structure to develop lna "t. The
terms of relative order a(m, /m,) have of course
been calculated previously.®

The absence of terms of relative order o*(m, /
m,) In(m,/m,) shows that there is no nonanalytic
behavior in the mass ratio in relative order a?
and makes it plausible that these terms can be
calculated in a simple way. If this can be done,
it would eliminate one of the major obstacles to
improving the accuracy of the theoretical predic-
tion. Corrections of higher order in @ due to ex-
changed photons are probably below the present
level of experimental accuracy and are certainly
less important than uncertainties in corrections
due to the insertion of photons into the electron
line.® Caswell and Lepage'® have been studying

¢ [(BE=my+ky=ky"? =—m?—=(K+KP+ie][(E-my,+k,F —m?> -k +1i€]’

(3)

l

radiative corrections in the intermediate-momen-
tum range and find that they may contribute sev-
eral kHz. Their paper will contain the simple
argument alluded to earlier.
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