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comes possible for A~ = 21.5 eV, an excitation
from A to C in Fig. 2 (with the initial state A at
the Fermi energy). This is illustrated in the sec-
ond curve of Fig. 3 for an A~ slightly below
threshold. For smaller 5v the initial state for
the G transition moves to lower energy as shown
in the third curve of Fig. 3.

Below h&u = 19.5 eV the Q transition (A to B in

Fig. 2) becomes possible as shown in the fourth
curve of Fig. 3. As 5& is decreased further, the
energies of initial states for both G and Q transi-
tions decrease. When the Q transition is first al-
lowed, the center of the G peak is -0.4 eV below
the Fermi energy in the nearly-free-electron
model. The difference in initial energies for the
two transitions increases to -0.6 eV as h~ is
lowered.

The calculation is based on a value Q =1.33(2w/
a). The separation between the peaks can be used
to determine the difference G», —Q. [This de-
pends on a knowledge of E(k) for the initial- and
final-state bands. ] Thus, angle-resolved photo-
emission can be used both to detect the presence
of a CDW and to measure its periodicity.

We have performed a similar analysis for sodi-
um. Since the Fermi energy in sodium is about
1.5 times that in potassium, the G transition (A
to Cin Fig. 2) occurs for h(@=33.4 eV in the near-
ly-free-electron model. The Q transition (A to B
in Fig. 2) occurs for I~ =31.4 eV. The spacing

between the two peaks is similar to that in potas-
sium, when a value Q =1.35(2n/a) is assumed for
sodium. However, because V», in Na is only
-0.2 eV, ' and the CDW energy gap V is thought
to be about 1.2 eV, the peak height for the G tran-
sition may be much smaller than that for the Q
transition. This disparity could lead to experi-
mental difficulties.

We have shown that angle-resolved photoemis-
sion offers a means to detect the presence of an
incommensurate CDW. The crucial idea is that
the periodicity Q of the CDW permits new transi-
tions compared to those allowed by the periodicity
of the crystal. By plotting AREDC's for various
incident photon energies, it should be possible to
identify any additional transitions and (if present)
to determine Q.
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The instability which arises in current mean-field theories of spin-glasses is removed,
within the replica method, by breaking the symmetry between replicas. For the Sherring-
ton-Kirkpatrick (SK) model the spin-glass order parameter has the expansion q =t +t2
+O(t ) (t =1—T/T, ), which differs at O(t2) from that given by SK.

Before substantial progress can be made in
understanding any phase transition it is essential
to obtain a sound understanding of the appropriate
mean-field theory. For the spin-glass phase
transition the model of Sherrington and Kirk-
patrick' (SK) provides a suitable starting point.
This is a model of Ising spins coupled by random,
infinite-ranged exchange interactions indepen-
dently distributed with a Gaussian probability den-
sity. The disorder is quenched, and so the free

energy, rather than the partition function, must
be averaged over the bond distribution. SK at-
tempted to solve this model, using the "n-replica
method, '" by means of which one writes lnZ
= lim„o(Z" —1)/n and recognizes that Z" is the
partition function for n identical replicas of the
original system. The bond averages may now be
taken at the outset yielding a translationally in-
variant model of coupled replicas. This may be
solved in the thermodynamic limit and the analy-
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tic continuation to n = 0 taken at the end of the cal-
culation. '

Unfortunately the solution presented by SK suf-
fers from a number of pathologies. Firstly, the
entropy becomes negative at sufficiently low tem-
peratures, an impossible result for Ising spins.
Secondly, a certain correlation function develops
a negative gap below 7', ." Furthermore, iden-
tical results can be obtained without the use of
the replica method" so that the latter cannot be
held solely responsible for these pathologies.
These difficulties constitute a long-standing puz-
zle in the theory of spin-glasses.

In this Letter we take the first step towards the
formulation of a sensible mean-field theory for

spin-glasses. Within the framework of the repli-
ca method we argue that the existence of modes
with a negative gap implies that the symmetry
between replicas should be broken. The simplest
possible symmetry breaking is displayed explicit-
ly and shown to remove the instability near T„
replacing the negative gap by a zero gap. The
order parameter is changed from the SK value at
O((1 —T/T, )').

We consider an Ising spin-glass in which each
spin is coupled to z neighbors, and the bonds are
independently distributed with a Gaussian prob-
ability density. This is equivalent to the SK mod-
el in the limit z —~. The Landau-Ginzburg-
Wilson effective Hamiltonian density takes the
form"'

H= 4ZQ~'+4 Z(~Qns)' —
6 ZQaBQsyQyn-3 ZQnBQsyQy~Q~n+ 4 EQns'Qny' 3E-Qns'+O(Q') ~

The sums over the replica indices are unrestricted except that Q„&=0 for n=P. The parameters r
and ~ ares

r =z'(T'/T, ' —1), w =z',

while the coefficients of the quartic terms are'

u=z'=z =3y/2.

(2)

The Edwards-Anderson order parameter q= ((s, )'), (( ~ ~ ~ ) is a thermal average, ( ~ ~ ~ ), a configura-
tion average, and s, =+1 is the spin at the ith site) is given by

q =z(7'/7, ') (Q„,)„,. (4)

Sufficiently close to T, the terms of O(Q ) in Eq. (1) are negligible. Indeed, the quartic terms should
also be negligible close to T„but one of these destabilizes the standard theory, by inducing a nega-
tive gap in one of the correlation functions, so we shall retain them here.

The standard approach to mean-field theory is to find a stationary point of Eq. (1) for which Q„B(r)
= Q, all ngP, giving

H ~ = 4 n(n —1)(rQ' —
3 (n —2)w Q' —

2 u(n' —3n + 3)Q4+ x (n —1)Q —
2 y Q4).

The extremum equation dHMF/dQ = 0 yields for n = 0 and r (0 a nontrivial root satisfying the equation

i r i

—2w Q+ ( y + 2x + 3u) Q' = 0,
where the root which vanishes at r=0 is to be selected. In the vicinity of the critical point one obtains

4,

Q= i ~i/2w+(y+2m +3u) i
ri'/Sw'+ O(i ri'),

Use of Eqs. (2) —(4) gives finally

1Z 7' l7 7' 7

which is the SK result.
To investigate the stability of this mean-field solution we follow de Almeida and Thouless and Pytte

and Rudnick and expand the full Hamiltonian with respect to fluctuations about it. Writing, for a g P,
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Q 8(r) = Q+ R„s(r), substituting into Eq. (1), and expanding to O(R') one obtains'

H =HMF+ ~ {r—(2n —1)uQ'+ 2(n+ 1)xQ' —3yQ') PR
+ —,'g(VR ~)' ——'Q{w+(n —1)uQ —2xQ) g R sR„r——,'uQ'p'R

B~y
(9)

where P' denotes that all indices are different.
There are three distinct correlation functions"'.
G,(q) = &R q(q)R s(-q) &, G,(q) = & R 8 (q) R „~(-q)&,

ppy, and G(q) = &R ~(q)R&z( —q)&, n, ppy, 5,
where R 8(q) is the Fourier transform of R„B(r).
Their values may be computed by treating the
final two terms of Eq. (9) as perturbations and
summing all orders of perturbation theory via
Dyson's equations relating the various G's. Of
particular interest is the combination G„= G,
—2G2+ G, (the "replicon propagator" of Ref. 8)
which has for n=0 the value'

Gz(q) = [q2 —
I r I

+ 2w Q —(3y + 2x + 3u) Q'] ' (10)

G,(o) =&& 'P;,, &(&;,&
—&;&&,&)'&,

(A &0),
which is necessarily positive.

When faced with this kind of instability one
usually concludes that the symmetry must be
broken. We therefore propose to break the sym-
metry between replicas. The simplest way of
doing this is to divide the n replicas into two
groups, containing m and n —m replicas, respec-
tively, and to regard two replicas as equivalent
if they belong to the same group. Mean-field
theory then contains three different Q's, namely
(we take n&P),

where the last line follows from Eq. (6). Hence
this mode is gapless within Q' theory' but devel-
ops a negative gap in Q' theory since y &0. The
system is therefore unstable against long-wave-
length fluctuations. Furthermore, Eq. (11) is
nonsense physically for y &0 since one can show'

Q~~=Q3, o. &P ~m

Qna= Q„n &m & p

Qna= Q„m & o. & p.

(12)

When this form is substituted into Eq. (1), and
the resulting expression varied with respect to
Q„Q„and Q„one obtains for an extremum the
equations

Ir I Q, + w{mQ, 2+ (n —m —2) Q,')+y Q,
' —2x{mQ, Q, '+(n —m —1)Q, )

+ u{m(m —1)Q, Q, '+ 2m(n —m —1)Q, Q~'+ [ (n —m)' —3(n —m) + 3]Q,') = 0,

I r I Q, +w Q2{(m —1)Q, + (n —m —1)Q,) + y Q,
' —x Q,{nQ,'+ [(m —1)Q,

' + (n —m —1)Q,'] )
+ uQ2{(m —1)2Q32+ (m —l)(n —m —1)Q, Q, + m(n —m) Q22+ (n —m —1) Q )= 0

(13)

(i4)

and a third equation which may be obtained from Eq. (13) by interchanging Q, and Q, and replacing m
by n —m.

It is interesting to look for broken-symmetry solutions within Q theory. Since the propagator Gz is
gapless for this case we do not anticipate any. If we set m=0=x =y, the three stationarity equations
are easily solved to give two nontrivial solutions:

Q&= Q2= Q&= lrl/(2 —n)w

m IrI
2m —n

(m' —mn+n)~' IrI
2m —n

m —n r
2m —n K

(16)

Thus a distinct broken-symmetry solution exists for general m and n but collapses, as anticipated, on-
to the symmetric solution when n= 0. Note that we have implicitly assumed that we can analytically
continue to n= 0 holding m fixed. This is crucial in what follows. We may now proceed perturbatively
by expanding the Q's to lowest order in x, y, and u. Perturbing about the broken-symmetry solution
we find, setting n=0 finally,

Q, = Irl/2w+ (a,.y+2x+3u) IrI'/8w'+ O(IrI'), i =1, 2, 3,
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where

a, =3 —2/m, a2=3 —2/m', a, =3+2/m. (18)

The term in y has lifted the degeneracy between the symmetric and broken-symmetry solutions. Note
that it is precisely this term which is responsible for the instability in the symmetric theory. In choos-
ing a value for m we are guided by the physical requirement that the order parameter q be unique. Ac-
cording to Eq. (4) this requires that all the Q's be the same, which requires in turn that m= ~. This
limit restores the symmetry and gives Q, = Q, = Q, = Q with

Q =
[ r i /2w + (3y + 2x + 3u) i r i

'/8w' + 0( [ r i '), (19)

which differs from Eq. (7) merely by the replacement of y by 3y. As a consequence of this replacement
the expansion for q differs from Eq. (8) by the replacement of p, by ~8. The result is simpler when ex-
pressed in terms of t= 1 —T/T„namely,

q = t+ t'+ O(t'), (20)

compared with the SK value q~K = t+ s t'+ O(t'). The result q) q qK agrees qualitatively with the esti-
mates of Thouless, Anderson, and Palmer, "based on a mixture of analytic and numerical methods.

%e turn next to the problem of the stability of the new solution. For the broken-symmetry case the

replicon propagator for general m has the form

G~(q) =[q' —iri+2wQ, —3(u+y)Q, '+~{mQ,' —(m+1)Q, '}] ', (21)

where the replica labels specifying G„G„and G,
have been taken without loss of generality to lie
in the range m+ 1 to n and the analytic continua-
tion to n = 0 has been made. If one substitutes the
values given in Eq. (17) for the Q; one finds that
as m —~ the instability in G~ is just removed, to
O(i ri '), and once more a gapless mode is ob-
tained. (Any finite value of m would not remove
the instability. ) The question arises as to what

happens at next order in perturbation theory, i.e.,

O(vari').

To compute Q to

O(vari')

for the SK mod-
el one has to include O(Q') terms in Eq. (1). How-

ever, if we regard Eq. (1) as defining a model
problem we can compute the Q's to one higher
order in vari and obtain for m= ~ the result Gz(q)
= {q'+

i
ri'y'/4w'} '. Thus the symmetry break-

ing has left us w'ith a stable solution. However,
there also exist other solutions of the stationarity
equations which involve further symmetry break-
ing (obtained by dividing the replicas into three,
four, etc. , groups). It is possible, for example,
that the broken-symmetry solution involving three
groups of replicas might restore the gapless
mode to O(vari') and give a "better" free energy.
Unfortunately, algebraic complexities have pre-
vented us from carrying out this investigation.

It is interesting to note that in models with a
Gaussian distribution of spin lengths, such as
the spherical model, "the term in y which gives
rise to the instability is absent from Eq. (1). In
fact, of the quartic terms only that in u is pres-
ent. This feature persists to. all orders in Q,
with only terms of the form TrQ' appearing. For

such a model Pytte and Rudnick have shown' that
Gz(q) is an exactly gapless mode within mean-
field theory. No symmetry breaking is there-
fore required. This may explain why the replica-
symmetric theory gives exact results for the
spherical model with long-ranged interactions. "

Another question of interest is what happens
outside mean-field theory, Elsewhere' we have
considered Q' theory for the short-ranged inter-
action problem, and concluded that to lowest
order in the fluctuations [i.e., at O(w')] G~ devel-
ops an instability. Precisely the same symmetry
breaking as that described here was successful
there in removing the instability, and, further-
more, restored a gapless mode. As a result of
that calculation we concluded that the lower criti-
cal dimensionality d*, below which spin-glass
order (i.e., qg0) is impossible, is 4, since the
perturbation expansion for q breaks down for d
& 4 due to the appearance of an infrared-divergent
integral.

In summary, we have attempted a first step to-
wards a sensible mean-field theory of spin-glass-
es. Many questions remain unanswered, in par-
ticular, the implications of replica-symmetry
breaking for calculations which do not use the
replica method. As a final point we note that the
same techniques may be used for p-dimensional
spins (where p = 3, for example, corresponds to
Heisenberg spins) and are equally successful in
eliminating instabilities, both in the long-ranged
Q4 theory'2 and the short-ranged Q' theory. " In
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contrast to the Ising limit (p = 1) Ga acquires a
positive gap to 0(i ri') for p».
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Thin-film energy-band determinations of a surface-state-surface-resonance band in
Al(001) are found to account completely for and clarify the new angle-resolved photo-
emission observations of Gartland and Slagsvold. The transition from a true surface
state to a surface resonance is explained in terms of a mechanism in nearly-free-elec-
tron metals for the formation of surface resonances in "partial" Bragg-reflection bulk
energy gaps.

The first directly observed occupied surface
state on any simple nearly-free-electron (NFE)
metal was very recently reported by Gartland
and Slagsvold' using angle-resolved photoemis-
sion measurements on the (001) face of aluminum.
A dominant surface-sensitive peak was inter-
preted as emission from a two-dimensional band
of surface states. Spectra recorded along the
l"-X line in the two-dimensional Brillouin zone
yielded an experimental dispersion relation for
this peak which is parabolic with an effective
mass I*= (1.03+ 0.1)m. By comparison with the
projected bulk band structure' along I'-X, the
experimental band starts in the bulk gap at I' and
rises up in this gap. At about kil = (0.5, 0) (units
m/a, where a is the surface lattice parameter) it
merges into the continuum region and continues
smoothly upward to cut EF at about Ri, = (0.8, 0).
While true surface states can exist only in an ab-
solute bulk band gap, the experimental peak
shows no effect due to the closing of the absolute
gap at about kii- (0.5, 0), but persists smoothly
into the continuum region and up to EF. A calcu-
lation by Pendry' of the angle- and energy-re-
solved photocurrent also showed no changes in
the intensity or peak width when the peak leaves

the bulk band gap, in good agreement with experi-
ment. Gartl'and and Slagsvold, therefore, sug-
gested that the existence of the peak for large val-
ues of kii indicates a transition from a true sur-
face state to a surface resonance. These authors
were not able, however, to correlate the observed
peak behavior for large k

~i
with the results of

existing surface electronic band calculations'*4;
however, the measured dispersion relation agrees
quite well with the behavior of the surface state
found in these calculations for kii ((0.5, 0).

In this I.etter we present thin-film results for
the electronic structure of the aluminum (001)
surface which completely account for and clarify
the experimentally observed behavior. Using
our recently developed film linearized augmented
plane-wave (LAPW) method, ' we have performed
non-self-consistent calculations for nine- and
thirteen-layer aluminum films. We find a sur-
face-state-surface-resonance band which is in
very good agreement with the measured disper-
sion relation and we theoretically explain the ob-
served transition from a true surface state to a
surface resonance in terms of a mechanism
(which is particularly transparent) in NFE met-
als for the formation of a surface resonance in

1072 1978 The American Physical Society


