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amplitude. The collector current signal is sam-
pled with a resolution of 5 psec. In Fig. 4(a), one
sees a pronounced increase of 7.'; ~ as the decay
waves grow, without much change in T;~~. Al-
though this ion heating can be partly due to ion-
cyclotron damping of the IQM, the perpendicular
interaction of the LHW' with the ions is likely to
cause most of the 7'; ~ increase and the observed
tail formation.

With the onset of the instability, one observes
an enhanced absorption of the pump wave as
shown in Fig. 4(b) where we have plotted the am-
plitudes of the pump, the LHW, and the IQM as
functions of V &. The associated increase in T„
plotted in Fig. 4(c), appears to be due to electron
Landau damping of the IQM for which &=1. The
increase in T, is limited by the heat conduction
loss to the end plate. Furthermore, for pump
frequencies without parametric decay, the in-
creases of T'; and T, were small when compared
with the heating when parametric instabilities
were excited.

In summary, we have demonstrated that by
modulating the density of an electron beam at or
above coLH the heating efficiency of both electrons
and ions in a target plasma can be greatly in-
creased. This increase is associated with the
parametric excitation of lower-hybrid waves and
ion-cyclotron quasimodes. Similar effects may
be expected during heating of tokamaks with rf
near ~&H. Furthermore, similar heating tech-

niques can be applied by modulating a beam at
other plasma eigenmode frequencies.
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For density profiles, N(y), making a smooth transition fromN( ~)=0 to N(+~)=const
with d 1nN/dy decreasing monotonically with y, it is shown that the Rayleigh-Taylor in-
stability exhibits essentially different behavior above and below a certain critical wave
number, 0,. For k», the growth of the response to an initial perturbation is slower than
exponential, t exp(y&t). For k& &~ an unstable eigenmode (analogous to that in the
sharp boundary case) exists, and purely exponential growth occurs.

Recently, as a result of developments in pellet
fusion, ' imploding liner fusion, ' and ionospheric
physics, '~ the Rayleigh- Taylor instability has
been the subject of renewed interest. In this note
we present results for the Rayleigh-Taylor in-
stability with a diffuse density profile. For a.

fairly broad class of profiles we find that there
exists a critical wave number (transverse to the

density gradient) above which there are no eigen-
mode solutions, and the time-asymptotic response
to an initial excitation exhibits slower than ex-
ponential growth. For smalIer wave numbers
eigenmode solutions occur, and the time-asymp-
totic response to an initial perturbation grows
exponentially with time.

Taking gravity g = -gy, with equilibrium density
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d dn 2 a 1 dN I

N ' —N ——k 1 — 2
— v= —F(y),

dy dy s'N dy J

where I'(y) = (k/s)'[d8/dt +s8], , and

(2)

8(t,y) =2 . f ""dsv(s,y)exp(st),

with 0 chosen so that v has no singularities in
Re(s) & o. Equation (2) is to be solved subject to
the condition that the energy density of the per-
turbation approaches zero as!y!-~. Since the
perturbation energy density is proportional to
N8', we have N"'v - 0 as!y!- ~. (Note that v it-
self can actually become infinite if N approaches !

gradients in y only (VN= y, dN/dy), and lineariz-
ing the fluid equations, we obtain for the y com-
ponent of the fluid velocity

8 88 2 & u'dN—N 2 —k N -2- —8=0,
83)at Bt N dg

where we have neglected compressibility, equi-
librium flow, and viscosity, and have assumed an
x dependence exp(ikx). We consider the initial-
value problem for (1) and introduce the Laplace
transform:

zero at infinity. ) We set q = N'~'v and consider
the Green's function associated with (2):

d Q'

dg
, -k Q(s, y)q =-Ã5(y+y, ),

where& is a constant, q —0 as!y!—~, and

g 1dN 1 d N'i'

s N dy kNv dy'

%e first examine the following illustrative den-
sity profile for which N(y) increases monotonical-
ly from zero to a constant value:

N(y) =N„y&0; N(y) =N, exp(Py), y&0. (4)

Subsequently we shall show that certain results
obtained for (4) apply more generally. Solving
(3) and (4) for y, & 0 subject to the conditions at
!y! -~, the continuity of q at y = 0 and y = -y„
and the jump conditions on dq/dy at y = 0 and y
= -y„we have

A(s)e "for y&-y„
q= B(s)e "+C(s)e ' for -y, &y&0,

D(s)e '" for y&0,

where

n = [(2p)'+k'(1- pg/s')]"', A(s) =K
2

'
k /2 exp( ny, )-+exp(oy, ) (6)

Re(a) &0 for Re(s)&o. (7)

From (6) it is evident that the Green's function
has branch points (associated with continuous
spectra) at s =ay„(i.e. , o =0)

p
1/2

1+ 2k '
an essential singularity at s = 0, and possible
poles (discrete spectra) at

with similar expressions for the other coeffi-
cients. In accord with the condition at y = —~ the
square root is defined so that

! incide, y~=y~. For larger k, the pole drops on
to the lower sheet of a [where the inequality (7)
is reversed) and y~&y~ again. (Since for P &2k,
the pole is on the lower sheet, it will not be in-
tercepted when the Laplace contour is deformed
to the left. ) For t & 0 we can deform the Laplace
contour to the left. The long-time asymptotic be-
havior of g(t, y) will then be dominated by the in-
tercepted singularity of q(s, y) with the largest
real part. For P & 2k this singularity is the pole
s =y~ and the resulting residue from the inverse
Laplace transform yields

1a =-2P-k. (9) g - exp[(kg)"'t].

Equations (7) and (9) can only be satisfied for 2k

&P, and, under this condition, the poles are lo-
cated at s =ay~, where

r, -=(kg)"' (10)

Remarkably, (10) coincides precisely with the
sharp-boundary result. It is of interest to follow
the migration of the pole as k is varied. For P
&2k, y&&y„and as k is increased y~ moves to-
ward y, . At P= 2k, the pole and branch point co-

tf-t "'expy, t exp[- b(y+y, )'/t] (12)

for 5/t&y, ', where 5 =k'gP/2y~'. Thus, g is in

On the other hand, for P &2k, the dominant contri-
bution is from the branch point at s =y~. The in-
verse Laplace transform can then be evaluated by
expanding q (s,y) about s =y„, and performing the
integration asymptotically for large t. One then
obtains slower than exponential growth" at any
point:
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the form of a spreading Gaussian whose area in-
creases exponentially in time. For t & b(y+y, )',
growth is slower than exponential, j'-t "'expy„t.
Note that y, = (pg)"' for 4k'» p'. These results
show the transition from the growth rate (Pg)'~',
obtained from the local approximation [k'- ~ and
d'q/dy' neglected in (3)], to the sharp-boundary
result (11)for long wavelength (@~=y, at P =2k).
For the profile (4) we see that the local approxi-
mation corresponds to the continuous spectrum
with slightly slower than exponential growth.
]Note that the pole solution corresponds to an
eigenfunction and can be simply obtained by con-
sidering the homogeneous version of (3). Apply-
ing the conditions at y = 0 we obtain o = P/2 —k,
q - exp(- ky) in y & 0, and q - exp[(p/2 —k)y] in y
&0. From this we see that q-0 iny- —~ only if
p&2k. ]

We now consider how these results generalize
to profiles other than (4). In order for eigenmode
solutions to exist [i.e. , homogeneous solutions of
(3) satisfying q —0 at ~y~

—~], Q must have the
character of a potential well, In particular, Q
must be positive for ~y~

—~ (so that q decays ex-
ponentially at infinity), and must be sufficiently
negative over some interval of y. [Note that on
multiplying (3) by q and integrating over all y a
quadratic form results which shows that any
eigensolutions have s' real. Consequently Q is
taken real in this discussion. ] For short wave-
length, k'- ~, the term N "'d'N"'/dy' in Q is
negligible, and the y dependence of Q is deter-
mined by N 'dN/dy. In many circumstances in
which there is a transition from %=0 aty = —~
to N=const at y =~, the term N 'dN/dy decreas-
es monotonically with y. Thus under this fairly
general condition Q does not have the character
of a potential well and no eigenmode solutions
(poles of the Green's function) exist for short
wavelength. This agrees with our result for the
profile (4). [For profile (4), N 'dN/dy decreases
monotonically since we have P & 0 for y (0 and
zero for y &0.] For k' small the term N "'d'N"'/
dy' becomes important. For profiles with N(- ~)
= 0 and N(+ ~) = const, this term must have the
character of a potential well, and unstable eigen-
modes can oeeur. In fact, for k'«P'(y)=- (N 'dN/
dy)', the extent of the mode in y is much larger
than P

' and the sharp-boundary eigenmode is re-
covered. Thus, there will be some critical wave
number k, such that for k (k, (k &k,) eigenmodes
exist (do not exist). For the profile (4) we have
determined k, to be P/2. [Of oeurse for profiles
where P(y) assumes a local minimum somewhere

(y =y, say), there trill be eigensolutions for k'
» p . In this case one can write p(y) —= p(y ) + p" (y
=y )(y -y )'/2 and obtain the harmonic-oscillator
equation localized about y =y with eigenvalue s
= y, .] The result (12) applies to profile (4) which
has dP/dy =0 iny&0. However, (12) will still ap-
ply for times I;(t„which are short enough that
the width of the Gaussian in (12) is sufficiently
small so that the perturbation does not see the
variation of P(y):

2r b t.= [2k/—p(- y.)]"'~"'(-y.), (13)

where a(y) =P'(dP/dy) '-1. Thus from (13), for
short wavelengths, k»P(-y, ), the instability can
reach the nonlinear stage before the y dependence
of p is felt.

Finally, in order to see how these results are
modified if N(- ~)x 0 we consider the profile N(y)
=N, exp(-Py, ) for y( -y„N(y) =N, exp(Py) for
-y, ( y ( 0, and N(y) =N, for y &0, which corre-
sponds to (4) for y, —~. Solution of the Green's-
function problem, Eq. (3), for this case shows
that no branch points are present since q turns
out to be an even function of e. The poles of q
are located at the solutions of

2k [(P/2)' —(k'+ n')] ' = o ' tanhay, (14a)

2k[(p/2)'+v' —k'] '= z 'tangly, . (14b)
I

It follows from the definition of n that any root
for 0. imaginary satisfies s'&y, ', while under con-
dition (15) the pole for n real satisfies s'&y, '.
Thus when (15) applies the root with n real domi-
nates. By sketching both sides of (14b) it is seen
that one root of w occurs in each of the intervals
3w/2 & gy ~ & m/2, 5m/2 & yy ~ & 3m/2, . . . , and, if (15)
is not satisfied, also in n/2 &my, &0. Since ~ -~

Since s' is real, e is either purely real or pure-
ly imaginary. First consider the case o. real.
Since the right-hand side of (14a) decreases with
e while the left-hand side increases, there can
at most be one root in n, and the condition for
this root to exist is that the right-hand side of
(14a) exceed the left-hand side at o = 0, or

p&2k[1+2(ky, ) ']"'.
This condition is analogous to the condition P &2k
for profile (4). Also for y, —~ the root of (14a)
becomes o. =P/2 —k or s =ay~. For k- ~ (14a)
yields s =kg[N(~) —N(- ~)]/[N(~)+N(- ~)], which
is the sharp-boundary result. Now consider the
case o. purely imaginary and define a =i~ so that
(14a) becomes
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corresponds to s'-0, there is a clustering of
poles around s = 0 (i.e. , there is an infinite num-
ber of poles in any finite region around s =0). Al-
so, for y, -~ the density of poles in any region
in y~& s & -y~ approaches infinity, and the con-
tinuum of profile (4) is recovered.
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Measurements of the dispersion curves on sirgle. crystals of NbDO g5 and NbHO 82 reveal
two new excitations at 8 =18.4 and 10.8 meV. The positions of these excitations are in-
dependent of temperature and mass of the light atom, but the linewidth is broader in the
~' solid-solution phase than in the P phase, and broader in the hydrogen system than in
the deuterium system.

Hydrogen in metals has been extensively stud-
ied over the last two decades for reasons both
basic and applied. ' Since the diffusivity of hydro-
gen is very large in metals and since samples
are readily made, the hydrogen-metal systems
are ideal for studying the microscopic mechan-
isms of interstitial diffusion in solids by neutron
scattering. The dynamics of hydrogen and deu-
terium in Pd, V, Nb, and Ta have been studied
by inelastic neutron-scattering techniques. These
studies have concentrated on (i) the measure-
ments of the diffusion constant by examining the
width of the quasielastic incoherent scattering
with energies generally less than 1.0 meV, '
(ii) the lattice dynamics of the host lattice in the
energy range of less than 30.0 meV, ' and (iii) the
study of the local vibration of H (or D) at energies
frequently as high as 170 meV. ' lt has generally

been accepted that the light atoms change the elec-
tronic properties of the metallic host, thereby af-
fecting the electron-phonon interaction. 4 Howev-

er, because of the large mass differences, the
coupling of the light interstitial atoms to the heavy
metal atoms is considered quite weak, and no

large change in the lattice dynamics of the host
lattice is expected.

We report below measurements of the phonon
dispersion curves of Nbo, ~ and NbH, ~ in the o. '

solid solution and in the ordered t) hydride phase.
Observations of additional low-frequency excita-
tions at S~ = 18.4 and hg) = 10.8 meV are report-
ed. ' These excitations are q independent, having
energies well below the local-mode vibrational
levels and within the range of the host lattice
modes. The meaning of these new features is not
understood but they undoubtedly will play an im-

Work of the U. S. Government
Not subject to U. S. copyright 1051


