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Nonoverlapping orbitals make Hartree-Fock calculations possible in the presence of
bard-core interactions. Such orbitals tend to be unfavorable to rotational invariance and
to n clustering. They define a new type of collective motion, correlation vibration.

It is usually believed that Slater determinants cannot incorporate the correlations induced by the
short-range repulsion which seems to occur in the bare nuclear interaction. This belief leads to an
assumed failure of the Hartree-Fock (HF) theory and its replacement by the Brueckner, Levinson,
and Mahmoud' or Jastrow' theories, or the regularization' theory, or the introduction of softer effec-
tive interactions. It is shown here, however, that certain determinants are compatible with singular
sho rt-range repulsions.

For the sake of simplicity we assume the interaction V(l r,. —r, I), where r, is the position of nucleon
i, to be local, infinitely repulsive when I r; —r, I

& r„and finite (and basically attractive) beyond that
radius r„ the hard-core radius. We now give a trivial example of a Slater determinant which gener-
ates a finite potential energy for that hard-core potential. We demand that each orbital yq be confined
with a domain uq and the distance between any point of &q and any point of 5)qi (A. &A. ) be at least equal
to r, (see Fig. 1). Short-range exclusion is trivially satisfied by the determinant 4 made of such or-
bitals. Of course, pz should have derivatives inside S z and vanish at the boundary.

More specifically, the one-body density matrix corresponding to 4 is, as usual,

p(, ")=-&cl~'(")~( ) Ic) = 5 o.(r)e.*("), (1)

where 4, 4 are the fermion field operators. The kinetic energy generated by the orbitals yz is ob-
viously finite. The potential energy is

1d'rd'r' V(lr —r' I)l p(r, r)p(r', r') —
I p(r, r') I'],

and it must be shown that the integrand vanishes when
I
r —r'

I &r, . From Eq. (1) and the confinement
of Pq one finds that the only nonvanishing contributions to (V) occur when r is in a domain x) u

and r'
is also in a domain K),. [Indeed, if either r or r (or both) were in one of the exclusion regions, we
find from Eq. (1) that p(r, r') vanishes and that either p(r, r) or p(r', r') (or both) also vanishes. ] It
has been pointed out, furthermore, that the situation Ir —r'

I &r, can then occur only if p, = v (namely
if X)„and S, are the sa.me). Then p(r, r') reduces to y&(r) Q&*(r') in the domain S& and the two-body
density matrix element which occurs in the right-hand side of Eq. (2) vanishes identically.

This kind of argument leads to the following generalization.
Theorem. —I et V be a two-body, local interaction, which contains a hard core. T et 4 be a X-particle

Slater determinant compatible with a finite expectation value (V) and p the corresponding density ma-
trix. Then the domain S in which p(r, r) differs from zero is disconnected and made of N distinct do-
mains X)~, The distance between two points in two different domains is at least equal to the hard-core
radius. Exchange terms disappear from ( V).

Proof.—Because of the hard core, it is necessary that

p(r, r) p(r', r') —
I p(r, r ')

I

'= 0 if
I
r —r'

I &r, , (3)
ln order to keep (V) finite, Eq. (2). From the very definition of p in terms of field operators, Eq. (1),
an alternative form of Eq. (3) is

I & 4 I
+'(r') +(r) I

I'&
I

=
II +(r) I

4'&
ll II +(r ')

I
I'&

ll if I r —r'
I «. , (4)

where II 4(r) I 4) II is the length of the corresponding vector in Hilbert space. One recognizes a scalar
product in the left-hand side of Eq. (4) and can take advantage of Schwa. rtz inequality to deduce that,
whenever

I
r —r'I &r„ the two vectors 4'(r)

I
4') and 4'(r')

I 4) are proportional. Let us choose r as a
fixed point inside S, where by definition p(r, r) is strictly positive, and define the normalized vector

I u(r))= f p(r, r)] ' 'e(r) I 4) .
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FIG. l. A most general configuration of available do-
mains. The picture is schematic and two dimensional,
for the sake of simplicity. Notice that each domain is
here not only connected but also simply connected. Be-
cause of nuclear attraction beyond the hard core, the
self-consistent orbitals for these domains will likely be
concentrated near the sharper borders. This configura-
tion induces therefore a certain amount of compactness.

if I~(r,)) and
I u(r, )) are required to be indepen-

dent vectors. Under that condition of independ-
ence, it is possible to define a,(r') as a vanish-
ing function out of S„ to extend v, out of R, in
the same way, and to obtain finally

p(r', r ")= v, (r ') v, *(r") + v, (r ') v, *(r"), (1O)

the rank of which is compatible with K= 2. The
generalization to N &2 is obvious. It is then tri-
vial to identify vq(r') with an orbital Qq(r'). This
orbital can be normalized, and it is strictly con-
fined inside the domain Sq. Linear independence
of orbtials is guaranteed by the fact that the do-
mains must be separated from each other by at
least z, . Finally, since exchange terms involve
products pq(r) Q„(r) with X e p, , they identically
vanish. It follows that the Hartree-Fock theory
reduces here to the Hartree theory.

One then obtains a doubly variational procedure,
namely (i) given a set of domains S~, find the
orbitals Qq which generate the lowest energy for
C, and (ii) find the domains & q which minimize
that lowest energy. This variational procedure
can be carried in the following way:

(i) For fixed domains Dq, the variational pro-
cedure gives the Hartree equations

If S is connected, any point r' inside S can be
reached by a certain number of steps (starting
from r) of length smaller than r, and remaining
inside S. There exists therefore a function o(r')
such that

where

V'pq(r) + Uq(r) Qq(r) =e qgq(r),

e(r')
I
4) = a(r') I u(r) ) .

This function vanishes nowhere inside B. One
may ask whether its phase may depend on the
path generated by the steps. But the modulus
Ia(r')

I
is well defined, for

p(r', r') =
I
v(r') I'.

From Eq. (7) one then derives

p(r ', r ")= v(r ') v*(r"), (8)
a kernel of rank 1. Whenever N&1, we know
from Eq. (1) tha. t p is of rank N, which gives a
contradiction. Therefore X) cannot be connected.

If S splits into two separate domains S, and S„
the same argument based on Eq. (4) and Schwartz
inequality yields

(gb)

e(r')
I
4)= v,(r') I u(r, )) if r'~ n„ (ga)

4(r ')
I
4 )= v,(r ')

I u(r, ) ) if r '~ I), ,

where r, and r, are two fixed points inside +, and
X)» respectively. There must be no way to go
from X), to S, by a step of length smaller than r,

Ux(r) = r J d'~'a(r - r')
I e p(r ') I' ~

yves

The distance between two domains being great-
er than r, guarantees that the potential Uq(r) is
finite in Sq.

Furthermore, for self-consistency, it is need-
ed that at each point outside the domain Sq,
where indeed the wave function Pq vanishes, the
potential Uq(r) be infinite positive. This con-
straint is easily achieved by choosing the do-
mains S q in such a way that each point of the sur-
face S q of R q is at a distance x, from the sur-
face S„ofanother domain S„(see Fig. 1).

When such a choice of domains has been made,
the Hartree equations can be solved, as usual,
by iteration, and the diagonalization of the Har-
tree Hamiltonians provides a complete set of
orthonormal wave functions in each domain Sq.
This leads to the possibility of particle-hole
excitations, as in usual HF theory.

Although we have thus shown that a Hartree-
Fock theory is still possible in the presence of
hard cores, it is not obvious that it makes sense,
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n(r, , ) = —V„r, (r, , (r, ,

0, ro&r;, ,

rc

0)
————"c—

'I (

namely that one gets a bound state. The numer-
ical example which follows gives such evidence.

(ii) This first problem having been solved in
fixed domains S q, the Hartree wave functions y q,

as well as the single-particle energies e ~, be-
come functionals of all the domains f) q. It should
be possible, by a minimization of the total energy
with respect to the shape of the domains, to ob-
tain equations for the domains themselves.

Investigations are actually carried out in order
to obtain such equations. Symmetry as well as
hydrodynamical considerations may be crucial
in order to solve this problem; in particular, the
consideration of surface energies, which appear
as a special feature of such confined single-par-
ticle wave functions, should be very important in
order to minimize the total energy (like in the
search of junctions between soap films).

A very simple example has been studied, in a
very restrained class of wave functions. We
have studied the case of four particles, in a two-
dimensional space, interacting through a two-
body potential v(r;,):

where we have chosen the numerical values

Vp 40 MeV, x, = 0.7 fm, ro = 1~ 7 fm.

The trial wave functions are (i = 1, 2, 3, 4)
—Z/2

y,. (b, o;x, y) =, (x —,'e,—r,.)(y ——,'q, r, )

(x —c,. b)'+(y —q, b)'.xexp— 40'

where b and 0 are two variational parameters.
The parameters e, and g; are

= 64= —$4= 1,
and the domains y 2 +3 cD4 where the wave
functions @„@„y„Q4are nonvanishing are shown
in Fig. 2.

The aim of such a very simple calculation is to
show that it is possible to find indeed a negative
energy for the minimizing determinant. Table I
shows the energy behavior as a function of b and
v. An approximate minimum is obtained for o
= 2.2 fm and b = 0.09 fm, and gives an energy
E~ j fi 1 3 MeV. This is not a large amount of
binding, but of course the class of trial functions
was quite small. What is nevertheless important
is that we actually get binding.

We have shown that, in the case of a two-body
interaction with a repulsive hard core, it is possi-
ble to construct Slater determinants giving rise
to finite total energy. Such Slater determinants
can be constructed by a doubly variational proce-
dure, with respect to the wave functions and to
the domains. The salient features of such deter-
minants are the following.

(i) They break translational invariance and, in
order to favor close packing, also tend to break
rotational invariance. Such symmetries could,
however, be restored by appropriate linear com-
binations of degenerate Slater determinants ob-
tained under translation and rotation, and this
procedure would therefore wash out the zero-den-
sity regions inherent in these Slater determinants.

TABLE I. Total binding energy (in MeV) as a function
of b (in fm) and 0 (in fm).

0. 0.08 0,09 0.1 0.2

FIG. 2. The configuration retained for the numerial
example, two-dimensional He. Actually the trial orbi-
tals used in that example depend only on two parameters,
the shift and width of the Gaussian from which these
trial orbials are generated.

2.0
2.1
2.2
2.B

8.26
4.70
1018

—1.02

8.02
—0.65
—1.28

1 ~ 11

2.44
—0.74
—1.80
—1,09

2.27
—0.88
—1.28
—1.07

—0.22
—1.25

1 ~ 17
—0.88
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FIG. B. Elementary deformation of two neighboring domains. If there exists coherence between similar deforma-
tion propagating through all domains, this coherence would define "correlation vibrations. "

(2) Among possible configurations, crystalline
or glass structure can be expected (the idea is
not new), but we want to emphasize again that
many other types of configurations are allowed,
and that the minimizing configuration should be
obtained by a variational procedure.

(3) Nonoverlapping orbitals are obviously un-
favorable to space-symmetric e clustering,
since there is only one orbital in each domain.
Some clustering might be reinstated by configura-
tion mixing under spin and isospin exchanges be-
tween domains and under angular momentum pro-
jection.

(4) The study of the system around the minimiz-
ing configuration should exhibit new modes of
collective excitations, namely vibrations of the
surfaces of the domains. These modes could be
called correlation vibrations, because they propa-
gate through the constraints imposed on the do-
mains, which are to be at a distance exactly
equal to x, from ea,ch other (Fig. 3).

(5) Hard-core raaii can be usea as generator
coordinates in this theory (i) to take into account
defects of charge invariance or symmetries, (ii)
to lower the energy, and (iii) to solve for singu-

lar repulsions softer than hard cores.
It is straightforward to generalize all these

considerations to time-dependent Hartree-Fock
theory.

While this work was being completed we have
been informed that similar ideas have been deve-
loped by B. Grammaticos and D. Vautherin. It is
a pleasure to thank them for sending results of
their Hartree- Fock calculation of crystalline
nuclear matter in presence of a hard core.
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