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A mechanism for spontaneous symmetry breaking and related phenomena and the cor-
responding blocking of metastable states is discussed. It is based on the interaction of
an object with a background of “probes” like photons or particles, etc., in its natural
surrounding, Applications include quasilocalization of macroscopic bodies, spontaneous
parity nonconservation of sugar crystals, localization of atoms in molecules (Born-Op-
penheimer approximation), stability of metastable compounds, and perhaps also intrin-

sic symmetries of elementary particles,

The object of this Letter is to discuss a quan-
tum mechanical mechanism of spontaneous sym-
metry breaking and related phenomena and the
corresponding blocking of states which are not
eigenstates of the Hamiltonian of the object in
question. This mechanism differs from, and is
much more powerful than, the one usually dis-
cussed in the current literature based on nonsym-
metric solutions to symmetric equations.

Consider an object O and a probe P described
in Hilbert spaces H° and H®, respectively. For
simplicity H° is assumed to be two dimensional;
generalizations will be mentioned at the end. Con-
sider further two orthogonal states ¢ ,° and ¢,°
of the object and an interaction between object
and probe leading to the following transitions of
the combined system:

009 =9, f00 ", i=1, 2, (1)

where ¢ F is the assumed initial state of the
probe. By linearity this gives the transition for
arbitrary initial state a@,®+ b@,°. If no further
observation is performed on the probe, and the
object alone is considered after separation of the
two, the object has to be described by a density
matrix p© on H° and the trace has to be taken
over HF,

Taking ¢,°,¢,° as basis in H° and assuming
(¢,7,9,F)=0, the transition (1) for an initial su-

perposition a@,° +b@,° with |af+|b=1 leads then
for the density matrix p© of the object to

(b, o8) <a*b(i;1li¢;’) ab*(q)lzll;’%la))

(' o) (@)

This constitutes a “reduction of the state vector”
of a pure initial to a mixed final state of the ob-
ject.

There are two important aspects in this connec-
tion. One is the compatibility of this reduction
with the linearity of the law of motion. This is
the case by construction. The second is the as-
sessment of the relevance and frequency of oc-
currence of this phenomenon. This may be judged
from its connection to the process of measure-
ment. Indeed Eq. (1) is a (simplified) model of a
measurement, in which information is trans-
ferred from the object to the probe in such a way
that subsequent observation of the probe alone
could discriminate exactly between the two cases
where the object is initially in the state ¢,° or
¢,°. The possibility of this discrimination re-
quires ¢,* and ¢,F in Eq. (1) to be orthogonal and
thus leads to the exact depletion of the off-diago-
nal elements of p© in Eq. (2) if the object alone
is considered, i.e., even, and in particular, in
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the absence of any actual observation of the
probe.! The following two examples illustrate
some important application. (I omit the super-
script O for the object where this does not lead
to confusion.)

Example 1.—The object is a macroscopic body.
¢, and ¢, are two localized spacially well-separ-
ated wave functions. The probe consists of one or
or several photons in the region where ¢, or ¢,
is localized. By observation of the photons one
could discriminate between the case where the
object is in the state ¢, or ¢,. It follows that the
passing, emission, or absorption of such photons
destroys any coherence which might have pre-
vailed before. Thus under the usual conditions of
the macroscopic world where one can see the ob-
jects, i.e., discriminate between different loca-
tions by observing photons, it is not possible to
preserve the coherence between states with ma-
croscopically different localization.? There is no
particular (e.g., cosmological) initial condition
needed for this. This is responsible also, for
instance, for the appearance of bubbles, localized
in space, in an overheated liquid.

Example 2.—Consider sugar. It can be in a
“right” (¢,) and “left” (¢,) state. If the sugar is
crystallized, the two may be discriminated by
eye (or microscope) by observing the light scat-
tered from it. Thus, again, any coherence be-
tween the two states ¢, and ¢, is immediately
destroyed by the interaction with this light. Now
if parity is conserved and the ground state is non-
degenerate it is of the form ¢ = a@, +B¢, with
|aP=|BP=3. Symmetry breaking cannot be due
to lack of symmetry of the ground state of a sym-
metric Hamiltonian unless the ground state is
degenerate, which is not expected to be the case
in general. In both examples the probes could
as well be electrons or molecules from the sur-
rounding (in particular for sugar dissolved in a
liquid).

An important question which remains to be an-
swered is, what singles out the particular states
¢, and ¢, for the reduction (2), i.e., why does
the reduction in the examples above not some-
times produce an incoherent mixture between
@, =W2) g, +¢,) and ¢_=(2)""(p, - ¢,), say,
instead of ¢, and ¢,. But this would imply that
if the object is originally in the state ¢,, say, it
could be found afterwards with 50% probability in
the state ¢ ,. This means that the interaction with
the probe, for which I took photons in my exam-
ples, could cause with 50% probability a transi-
tion between ¢, and ¢, which for large enough dis-

tance between the two cannot be the case for a
massive body. Thus the inertia of massive ob-
jects singles out quasilocalized states for a re-
duction by interactions with light probes.

I now turn to an important consequence of re-
duction (2) in case it occurs frequently (in a sense
to be discussed), namely the blocking of the
states ¢, and ¢, by stochastic (repeated) reduc-
tion.

- Consider for concreteness example 2 with a
parity-conserving Hamiltonian H. For proper
choice of the phases of ¢, and ¢, the two eigen-
states of H are ¢, = (¢,+ ¢,)/V2. Their energy
difference is 7w. Then, after a reduction the
density matrix on the right-hand side of (2) will
evolve in a time interval 7 according to p
~exp{-iH/it}p explitH /7} to

1 (1 +8,coswT

3)

0, sinwT )
2 T)’

—i8,sinwt 1-06,cosw

where 6,=|a? - |b2. For 6,#0, in particular for
6,=+1, i.e., pure initial state ¢, or ¢,, this ex-
hibits the expected oscillations with circular fre-
quency w. Thus the original property (right-hand-
edness of some sugar crystals) disappears after
a time T ~w™!. The fact that this time is long is
usually assumed to be the reason for stability.
It will be seen that this is only part of the truth.
If after a time interval 7 the object is again hit
by a probe leading to a reduction of the density
matrix to diagonal form, then

1<1+6 0

2V 0 1-5

3 ) , with 6 =56, coswt. (4)

If this is repeated »n times, say, then, after a
time ¢t=),,7, ~nT, where 7, are the time inter-
vals between subsequent reductions and T their
mean value, one obtains 6=0,= GOH y COSwWT, in
Eq. (4).

I now consider the important cases where?

wr,«1, i.e., T7,<T=1/w. (5)
Then

ﬁ COSWT, = ﬁ [1-3(w7,)?]~ exp (=3w? 2 7,2).

v=1 V=1 V=1

If all T, were equal this would lead to exp{-nw?72/
2}. Assuming more realistically a stochastic
distribution with distribution function e~ 7/" corre-
sponding to a Poisson distribution for the counting
rate within a given time interval, then},, 7,2
=2nT2= 27t for large n and one obtains

6,=0,e"Mt, with A=wXwT =wXT/T. (6)
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Thus the relaxation time 1/A =7 XT /7> T is much
larger than 7'=1/w if (5) holds. This blocking of
the states ¢, and ¢, by stochastic “reduction of
the state vector” prevents oscillation between ¢,
and ¢, and is responsible for enhanced stability.

The same analysis may be performed also if
the Hamiltonian has not the high symmetry (pari-
ty conservation) with respect to ¢, and ¢, as as-
sumed above. If its eigenstates are ¢ =ap, +By,
and ¢’ ==B*p, +a*p, with |ef?+|p=1, one ob-
tains 6,=06,I1,(1 - 8|ap|®sin®s w7,). With (5) this
leads to the replacement of A in (6) by X =4|ag|?
XwT/T < wT/T where one notes that |a|?+]g|2=1
implies 4| aB|?>< 1 with equality holding in the sym-
metric case |a]®=|g/%=3.

The model considered so far is rather schemat-
ic in several respects. First of all it is clear
that, in particular for microscopic systems, the
interaction with a probe like a photon does not
necessarily lead to orthogonal states ¢,” and ¢,°
for given incoming state ¢ ;. If it does not, then
one obtains only a partial reduction of the density
matrix p:

<pn plz)_,( P11 prz) (7)
p21 p22 C*p21 p22 ’
where ¢ = (¢,7,¢,%). Since the states are normal-

ized to unity, |£| <1 unless ¢, =a@,. After m re-
duction with ¢ , the off-diagonal elements are mul-

with*
w
1-

6t = e')\'t{éo - 2 Im ['—TE (1 - gn)p lg(O)J +01(.(02702)} ’

wTL
1-¢

P 15(t) =e'“{§"p 12(0) + %

where 8, =p,,(¢) —p,,(t) as in Eq. (4). Now [¢l”
=exp(¢ Inl¢l/7T) <exp(—=1t/7,), implying that the off-
diagonal element p ,, is effectively reduced to
zero after a run-in time of a few times 7,. The
condition (8) implies T,<«<w <™, and lw7/
(1-¢)] «<1in (9) so that spontaneous symmetry
breaking and blocking is recovered with modified
relaxation time 1/x’ as expected. This may, of
course, be generalized to nonsymmetric evolu-
tion as discussed for complete reduction.

In conclusion it is seen that even if single re-
ductions are very weak, i.e., if (1-1¢l) <1,
spontaneous symmetry breaking and blocking per-
sist as long as (8) holds. This ensures a wide
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tiplied by
¢m=TI¢,,
p=1

which approaches zero for large m if 1£,/1<1,
This is in line with the previously discussed re-
lation to the process of measurement since even
if the object may not be localized with one photon,
in example 1 for instance, this may still be done
with many of them, which then may be considered
as one probe’ leading to a (almost) complete re-
duction, or as many individual probes each lead-
ing to a partial reduction. From the physics in-
volved one thus expects the blocking effect to be
working similarly where, of course, one has to
require now that m partial reductions with Pl
<« 1 should take place in a time interval which is
short compared to T=1/w. This is borne out al-
so by the formal analysis whose result is given
here for symmetric (parity-conserving) Hamilton-
ian as in Egs. (3)—(6). Under the condition that
subsequent reductions are statistically indepen-
dent one can—for the analysis of the average re-
laxation—replaced 7, by 7, 7,2 by 27 (see above),
and the ¢, by their average ¢ with 1¢l<1, The
relevant condition replacing (5) turns out to be

wT/(1-1g)=wr <1, : (8)

After a sequence of n evolutions under A as in (3)
and subsequent reductions according to (7), an
initial density matrix p(0) turns into p(¢), where

1- g")60+02(w2702)} , A= w?T Re = szeff’ (9)

applicability of this phenomenon.

The second oversimplification of the model
analyzed is that H° is two dimensional and that
¢,° and ¢,° are reproduced exactly. Of course,
the whole discussion can be generalized to [ dif-
ferent mutually orthogonal states ¢,%<** ¢,° with-
out any principal change. Of some interest, how-
ever, is the generalization to groups of states
or subspaces H, © of H° such that starting from
given initial states ¢; °€ H, © subsequent inter-
actions with probes not necessarily reproduce
¢, °but still lead to (not necessarily pure) states
which are again in H; © for all 7. This interaction
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then leads to the depletion of matrix elements of
the density matrix between states from different
H,©in the same way and under the same circum-
stances as for the case of one-dimensional H;©
analyzed explicitly above. The general features
of the blocking effect are expected to prevail.

In conclusion I restate the main ingredients of
the mechanism presented here. It is based on the
interaction of the object under consideration with
a background of probes in its natural surrounding.
The relevant background may consist for instance
of electromagnetic or corpuscular radiation and
perhaps even neutrinos, or molecules within a
gas or fluid, and eventually also phonons, etc.,
in a solid, depending on the kind of object studied.
The characteristic behavior of the object under
the influence of this background is governed by
two criteria:

(i) The inertness critevion (a) singles out the
inert states to which reduction takes place such
that (b) the interaction with the background
(probes) does not induce transitions between
these states. It thus defines the axes of spontan-
eous symmetry breaking. For macroscopic bod-
ies it obviously singles out macroscopically lo-
calized states. If some interactions violate con-
dition (b) independent of the choice of inert states,
the state relaxes to unit density matrix, i.e.,
“total chaos.” Of course, small violation of con-
dition (b) can be tolerated as long as the relaxa-
tion time obtained from these transitions is long
as compared to the other characteristic times of
the problem at hand.

(ii) The frequency cvitevion for the blocking ef-
fect defines the regime in which the latter domi-
nates over the free evolution under the Hamiltoni-
an describing the object. In the cases calculated
here it is given by Egs. (5) and (8).

From the thermodynamical point of view the
frequency criterion implies that the object is in
a temperature bath with 27> 7w (T =absolute
temperature, k£ =Boltzmann constant) implying
unit equilibrium density matrix. However, under
the conditions of the inertness criterion, tZe
shovtev T and the smallev ¢, i.e., the move in-
tense the coupling, the longer is the relaxation
time 1/ ov 1/0'.

The mechanism of spontaneous symmetry break-
ing and blocking of metastable states so obtained
applies to many macroscopic systems and com-
pounds which would not be stable otherwise and
thus seems to play a crucial role for the stability
and classical property of the macroscopic world.®
It eliminates the need for special (cosmological)

initial conditions in order to obtain macroscop-
ically localized states.® It is expected to be im-
portant also in molecular physics for the local-
ization of atoms in molecules (and thus the appli-
cability in the widely used Born-Oppenheimer ap-
proximation), guaranteeing in particular the sta-
bility of steroisomers, chiral molecules (such as
sugar), etc. To what extent it operates also for
intrinsic degrees of freedom (including P and,//or
CP) of elementary particles is an open question,
which seems, however, certainly worthwhile
studying.

This work was supported in part by the Swiss
National Science Foundation.

!The connection with the problem of measurement
and the interpretation of quantum mechanics will be dis-
cussed in more detail elsewhere. Here I only remark
that starting from a purely statistical (ensemble) in-
terpretation of quantum mechanics one obtains in this
way under macroscopic conditions (see example 1 be-
low) a description of individual systems.

%In principle one could recover coherence by includ-
ing in the observation the final states of all such pho-
tons,

%0f course I implicitly assume also that the collision
time between object and probe is short compared to
Ty. This is, however, relevant only for the exact cal-
culation, not for the general feature of the effect dis-

cussed. (See the partial reduction discussed below.)

4o, | = C; %* for x<<1 with C; independent of n.

SFor instance, T=1/w~1yr and 7~ 10"’ sec imply
1/A= 3% 10'? yr according to (6). On the other hand,
for molecules with T=w™'<10"? sec it may be pos-
sible to study the blocking effect experimentally,
though perhaps not in the extreme limit (8), for in-
stance in a molecular beam crossing laser light or
going through a gas of appropriate pressure,

8For a recent synopsis (with references) of other
approaches to establish quantum mechanics as a gen-
eral theory whose applicability includes the classical
domain see J.-M. Lévy-Leblond, in Quantum Mechan -
ics, A Half Century Later, edited by J. Leite Lopes
and M., Paty (Reidel, Dordrecht, 1977), pp. 187—206,
Note, however, that no attempt is made here to prove
a reduction of the form (2) for the combined system
described on H°® gP, Unlike other approaches the
probe can therefore be a simple microscopic system,
which is obviously an important feature. On the other
hand, no coherence can prevail between different
“pointer” positions (or living and dead cats, etc., so
to speak) in the case of a macroscopic apparatus under
usual conditions, i.e., in the presence of radiation,
air, etc. (necessary for living cats).
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